

Forward-Backward Asymmetry in $B^{\pm} \rightarrow J/\psi K^{\pm}$ at the DØ Experiment

Julie Hogan *Rice University*

Moriond Electroweak – 17 March 2014 – Young Scientist Forum

A Few Definitions

- Tevatron DØ RunII: $p\overline{p}$ collisions at \sqrt{s} = 1.96 TeV
- Forward / Backward: $q_{FB} = -q_B \operatorname{sign}(\eta_B) = 1 \text{ or } -1$

•
$$A_{FB} = (N_F - N_B) / (N_F + N_B)$$

• This asymmetry (analagous to top quark A_{FB}) comes from interference of higher-order diagrams:

Motivation

- A_{FB} of $b\overline{b}$ production is an interesting quantity:
 - EW: $Z \rightarrow b\overline{b}$ asymmetry from LEP shows a strong pull against the SM fit \
 - QCD: large measured values of $t\bar{t} A_{FB}$
- No hadron collider measurement yet for $b\overline{b}$!
 - hadronization makes finding intial quark charge difficult in a jet-based analysis
 - Fully reconstructed B^{\pm} decays reduce hadronization issues and avoid ambiguities due to B^0 / \overline{B}^0 flavor oscillations
- DØ has many practical advantages:
 - $p\overline{p}$ initial state, reversing magnet polarities, extensive μ coverage

arXiv:1306.0571v2 [hep-ph]

Mar. 17, 2014

Selection Overview

- $\mu^+\mu^-$ pair (J/ψ) + track $(K^{\pm}$ candidate) = B^{\pm} candidate
- Monte Carlo: carefully weighted to simulate expected signal data
- Important region near $\eta = 0$: F/B definition is ambiguous due to detector η resolution /

- For good F/B agreement of $b, \overline{b} \rightarrow B^{\pm} \rightarrow B^{\pm}$ (reco) we reject $|\eta| < 0.1$
- BDT for background rejection, cut chosen to minimize A_{FB} uncertainty

Julie Hogan – Moriond Electroweak YSF

Minimum Log-Likelihood Fit

- Events weighted to correct for reconstruction asymmetries
- 4 components with event fractions and blinded asymmetries

$$LLH = -2\sum_{n=1}^{N} w_n \ln(\frac{1}{2}\mathcal{L}_n) \quad \mathcal{L}_n = \alpha [f_S(1+q_{FB}A_S)S + f_P(1+q_{FB}A_P)P]$$

RunII $B^{\pm} \rightarrow J/\psi K^{\pm}$: Forward + Backward

$$+ f_T (1 + q_{FB} A_T) T]$$

$$+ [1 - \alpha (f_S + f_P + f_T)](1 + q_{FB}A_E)E$$

<u>Signal</u>: B^{\pm} → J/ψ K^{\pm} double Gaussian <u>Pion</u>: B^{\pm} → J/ψ π^{\pm} shifted double Gaussian <u>Threshold</u>: partial B^{\pm} reconstruction <u>Exponential</u>: combinatoric background

Mar. 17, 2014

Reconstruction Asymmetries

- Reconstruction asymmetries of J/ψ or K^{\pm} must be corrected
- Asymmetries between $\eta < 0$ and $\eta > 0$ used to set $\varepsilon_{\eta < 0} = \varepsilon_{\eta > 0}$ with a corrective weight, based on event-by-event kinematics
- Corrections confirmed with a weighted average over the kinematic bins: i.e. $A(J/\psi) = \frac{1}{N} \sum N_i (B^{\pm} \to J/\psi K^{\pm}) A_i (J/\psi)$

Blinded Fit Result (sign of $\eta_{\rm B}$ randomized)

78596 $B^{\pm} \rightarrow J/\psi K^{\pm}$ evts: $A_{FB} = [-0.137 \pm 0.307 (stat.)]\%$

Randomized Fit \rightarrow Consistent with zero $A(J/\psi, K^{\pm})$ consistent with expectations from cross-check

RunII $B^{\pm} \rightarrow J/\psi K^{\pm}$: Forward + Backward

RunII $B^{\pm} \rightarrow J/\psi \ K^{\pm}$: Forward - Backward

- Analysis is moving through the review process toward unblinding and publication
- Reconstruction asymmetries involve new methods, receiving significant examination before unblinding
- Future steps:
 - Extend from B^{\pm} to $b\overline{b}$, possibly in kinematic bins, i.e. $M(b\overline{b})$, $|\eta|$, etc.
 - Get a SM prediction for DØ from MC @ NLO
 - If applicable, interpret results in light of appropriate new physics models

- Analysis is moving through the review process toward unblinding and publication
- Reconstruction asymmetries involve new methods, receiving significant examination before unblinding
- Future steps:
 - Extend from B^{\pm} to $b\overline{b}$, possibly in kinematic bins, i.e. $M(b\overline{b})$, $|\eta|$, etc.
 - Get a SM prediction for DØ from MC @ NLO
 - If applicable, interpret results in light of appropriate new physics models

Mar. 17, 2014

Backup

Mar. 17, 2014

Dzero Detector

Theoretical Sources

- Forward-Backward Asymmetry of Hadroproduced Heavy Quarks in QCD (Phys.Lett.B 195, 1987)
 - Suggests exploiting $B^{\pm} \rightarrow J/\psi K^{\pm}$
- Charge Asymmetry of Heavy Quarks at Hadron Colliders, (Phys.Rev.D 59,1999)
 - Angular-integrated asymmetry at Tevatron energies of ~4-5%

- Bottom Quark Forward-Backward Asymmetry in the Standard Model and Beyond (PRL 111, 2013)
 - NLO prediction based on CDF detector settings and a jet based analysis. Inclusive $A_{FB} = (0.48 \pm 0.12)\%$

Mar. 17, 2014

Event Selection

- Full RunII data 10.4 fb⁻¹
- $\mu^+\mu^-$ pair (J/ψ) + track $(K^{\pm}$ candidate) = B^{\pm} candidate

Reconstruction Asymmetries

- Asymmetries between $\eta < 0$ and $\eta > 0$ calculated on separate samples in bins of $|\eta|$ and/or p_T
- J/ψ : prompt particles
 - identical selection with requirement of low decay length significance
 - Est. 2% B^{\pm} fraction
- Sideband sub. of bkgd:
 - Peak 2.9 GeV 3.3 GeV

Reconstruction Asymmetries

- Kaons: sample of $\varphi \rightarrow K^+K^-$ decays with selection to reproduce kinematics of kaons in $B^{\pm} \rightarrow J/\psi K^{\pm}$
- Binned by charge and $|\eta|$ of leading kaon
- Simultaneous fits to North & South side data to calculate A_{NS} for each bin:

Blinded B⁺ / B⁻ Fit Results

(sign of η_B randomized)

 B^+ Fit \rightarrow 39241 Signal $A_{FB} = (0.142 \pm 0.431)\%$

 B^{-} Fit \rightarrow 39319 Signal A_{FB} = (-0.419 ± 0.433)%

RunII B \rightarrow J/ ψ K⁻: Forward - Backward

Randomized Fits \rightarrow consistent with zero Averaged $A_{FB} \rightarrow$ consistent with full fit Averaged $A(J/\psi, K^{\pm})$ correction \rightarrow consistent with full fit

RunII $B^+ \rightarrow J/\psi K^+$: Forward - Backward

