http://cds.cern.ch/record/1668410
arXiv:1403.3047, submitted to EPJC

<u>Measurement</u> of **WZ and ZZ** production in pp collisions at 8 TeV in final states with **b-tagged jets** with the CMS experiment

Young Scientist Forum

Caterina Vernieri on behalf of the CMS collaboration

Les Rencontres de Moriond on "EW Interactions and Unified Theories" - 15-22 March 2014

Diboson, a Standard Model Candle

Diboson production in the b $\overline{\mathbf{b}}$ final state

Evidence at Tevatron

Purest bb resonance

A standard candle to validate the Higgs signal in the boosted regime

Moving from VH to VZ

• $H \rightarrow b\overline{b}$ at LHC is searched in events where H is produced in association with a W or Z boson with high boost (~ 100 GeV)

- \blacktriangleright events are triggered by the leptonic decay of the W/Z (e, μ , MET)
- multi-jet QCD background is highly suppressed

Analysis Strategy, as for the Higgs search

<u>Key points</u>:

- Extract normalization for the dominant backgrounds from the data V+0b/1b/2b and top pair production
- 2. A multivariate analysis, BDT
- 3. b-jet energy specific corrections (regression)

Strategy, b-jet energy MVA regression

Multidimensional calibration targeting the gen jet $p_{\rm T}$

✓ Basic kinematic and jet properties
 ✓ b-tag and soft lepton information
 ✓ MET related

Final resolution is ~15%

The sensitivity increases by **10-20**%

b-jet energy regression, Validation on Data

arXiv:1403.3047, Results

thanks!

http://cds.cern.ch/record/1668410
arXiv:1403.3047, submitted to EPJC

Motivations, Boosted Regime

- The VH search requires a large boost (~100 GeV) for bb pair for a further reduction of the Z/W+jets and tt backgrounds
 - Different boost categories for each channel are exploited separately
- Also an improvement in the resolution of the reconstructed Z/H(bb) candidate is achieved.

- Given the p_T(V)-dependency of the cross section, for VH the boosted regime improves S/B
- ► S/B for VZ has almost a flat dependency from p_T(V)
 - The trigger paths developed for VH search do not allow for p_T(V)<100 GeV for W(Iv) and Z(vv)
 - VZ cross section measurement is then performed in the boosted regime as well
 - The phase space defined by p_T(V)>100 GeV is chosen in order to have the same acceptance across the different modes

Signal Topology

- Inclusive muon and electron triggers for the charged leptons mode
- Dedicated strategy for Z(vv):
 - Exploiting triggers with b-tag on-line requirements, allows to accept events with MET down to ~100 GeV

m(bb), VH vs. VBF

Variables can be grouped in 5:

- JET KINEMATIC
- ENERGY FRACTION
- MET RELATED
- JET STRUCTURE
- CSV-RELATED

VBF	VH
	raw p _T
p _T	p_T
	E_{T}
	$M_{ m T}$
	JECUnc
η	
charged-hadron energy fraction	
neutral-hadron energy fraction	
photon energy fraction	
muon energy fraction	
electron energy fraction	CeFr
secondary vertex p_T	vtxPt
secondary vertex dL	vtx3dL
error on jet secondary vertex dL	vtx3deL
	vtxMass
CSV	
	SoftLeptPtRe
	SoftLeptPt
	SoftLeptdR
$d\phi(MET, p_T)$	$d\phi(MET, p_T)$
MET	MET
	THE PROPERTY AND

Background Estimate

The contributing backgrounds are :

- W/Z+jets splitted in V+bb and V+udscg
- tt pair production (tt)
- Single top, WW and VH
- QCD multijet

Data-driven normalization to signal region MC Negligible

- Control regions (CR) for the main backgrounds: V+bb, tt, V+udscg are identified in data and used to adjust Monte Carlo estimates.
- A set of simultaneous fits is performed to the CR separately in each channel to obtain consistent data/MC scale factors.
 - Also a different fit among the different $p_T(V)$ categories except Z(II) channel
- Based on CMS&Atlas studies events are split into 0/1/2b content at generator level.

Scale Factors

Data/MC SF for each CR in each decay mode.

• Electron and muons samples are fit simultaneously to determine average SF.

ProcessWLowW0b1.03 \pm 0	$V(\ell u)$ 0.01 ± 0.05 0.25 ± 0.20	Z(ℓℓ)	$\begin{array}{c} \mathrm{Z}(\nu\nu)\\ 0.83\pm0.02\pm0.04 \end{array}$
$\begin{array}{c} \text{Low} \\ \text{W0b} \\ 1.03 \pm 0 \\ \text{W1b} \\ \end{array}$	$0.01 \pm 0.05 \\ 0.25 \pm 0.20$	_	$0.83 \pm 0.02 \pm 0.04$
W0b 1.03 ± 0	$0.01 \pm 0.05 \\ 0.25 \pm 0.20$	_	$0.83 \pm 0.02 \pm 0.04$
77741 0.00 1	0.25 ± 0.20		
W1b 2.22 ± 0		-	$2.30 \pm 0.21 \pm 0.11$
W2b 1.58 ± 0	0.26 ± 0.24	_	$0.85 \pm 0.24 \pm 0.14$
Z0b	_	$1.11 \pm 0.04 \pm 0.06$	$1.24 \pm 0.03 \pm 0.09$
Z1b	_	$1.59 \pm 0.07 \pm 0.08$	$2.06 \pm 0.06 \pm 0.09$
Z2b	_	$0.98 \pm 0.10 \pm 0.08$	$1.25 \pm 0.05 \pm 0.11$
1.03 ± 0	0.01 ± 0.04	$1.10 \pm 0.05 \pm 0.06$	$1.01 \pm 0.02 \pm 0.04$
Intermediate			
W0b 1.02 ± 0	0.01 ± 0.07	-	$0.93 \pm 0.02 \pm 0.04$
W1b 2.90 ± 0	0.26 ± 0.20	_	$2.08 \pm 0.20 \pm 0.12$
W2b 1.30 ± 0	0.23 ± 0.14	_	$0.75 \pm 0.26 \pm 0.11$
Z0b	_	_	$1.19 \pm 0.03 \pm 0.07$
Z1b	_	_	$2.30 \pm 0.07 \pm 0.08$
Z2b	_	_	$1.11 \pm 0.06 \pm 0.12$
1.02 ± 0	0.01 ± 0.15	_	$0.99 \pm 0.02 \pm 0.03$
High			
W0b 1.04 ± 0	0.01 ± 0.07	_	$0.93 \pm 0.02 \pm 0.03$
W1b 2.46 ± 0	0.33 ± 0.22	_	$2.12 \pm 0.22 \pm 0.10$
W2b 0.77 ± 0.000	0.25 ± 0.08	_	$0.71 \pm 0.25 \pm 0.15$
Z0b	_	$1.11 \pm 0.04 \pm 0.06$	$1.17 \pm 0.02 \pm 0.08$
Z1b	_	$1.59 \pm 0.07 \pm 0.08$	$2.13 \pm 0.05 \pm 0.07$
Z2b	_	$0.98 \pm 0.10 \pm 0.08$	$1.12 \pm 0.04 \pm 0.10$
1.00 ± 0	0.01 ± 0.11	$1.10 \pm 0.05 \pm 0.06$	$0.99 \pm 0.02 \pm 0.03$

All SFs are in good agreement across the different modes

- The major part is close to 1
- ▶ V+1b is typically ~2, but:
- Not dominant background
- consistent with other CMS/Atlas studies

Mjj Selection

Same selection criteria as applied in the VH analysis for each channel, optimized wrt purity:

Variable	$W(\ell u)Z$	$\mathrm{Z}(\ell\ell)\mathrm{Z}$	$\mathrm{Z}(u u)\mathrm{Z}$
$m_{\ell\ell}$	-	_	$75 < m_{\ell\ell} < 105$
$p_T(j_1),p_T(j_2)$	> 30, > 30	> 20, > 20	> 60 > 30
$p_T(\mathrm{jj})$	> 100	_	> 110
$p_T(\ell)$	> 30	> 20	_
	$[100-130]~(\mu)$	_	[100 - 130]
$p_T(\mathrm{V})$	$[100 - 150]$ (e) $[130 - 180]$ (μ)	[100 - 150]	[130 - 170]
	$> 150 (e) > 180 (\mu)$	> 150	> 170
$\mathrm{CSV}(j_1),\mathrm{CSV}(j_2)$	CSVT, > 0.5	CSVM, > 0.5	CSVT, > 0.5
$\Delta \phi({ m V},{ m H})$	> 2.95	_	> 2.95
$\Delta R(m jj)$	_	-(-, < 1.6)	_
$N_{ m aj}$	= 0	_	= 0
$N_{ m al}$	= 0	_	= 0
$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}$	> 45	< 60.	_
$\Delta \phi(\mathrm{E}_\mathrm{T}^\mathrm{miss},\mathrm{jet})$	_	_	> 0.7 (> 0.7, > 0.5)
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{trkMET})$	_	_	< 0.5
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{lep})$	$<\pi/2$	_	_

- Subset of events used in the BDT analysis
- Tighter selection in b-tagging and other additional selection
- ▶ Different binning in boson-p⊤
- For Z(II) optimized on p_T (V), selecting different regions and then wrt the cut on dR(bb)

BDT Selection

Final selection criteria optimized for each channel for the Higgs search in order to maximize signal efficiency

Z/W selection plus loose b-tag requirements than for Mjj selection.

Variable	$W(\ell\nu)Z$	$Z(\ell \ell)Z$	$Z(\nu\nu)Z$
$m_{\ell\ell}$	_	[75 - 105]	_
$p_T(j_1),p_T(j_2)$	> 30, > 30	> 20, > 20	> 60, > 30
$p_T(\mathrm{jj})$	> 100	_	> 100
M(m jj)	< 250	[40 - 250]	< 250
$p_T(\ell)$	> 30	> 20	-
	$[100 - 130] (\mu)$	-	[100 - 130]
$p_T(\mathrm{V})$	$[100 - 150]$ (e) $[130 - 180]$ (μ)	_	[130 - 170]
	$> 150 (e) > 180 (\mu)$	> 100	> 170
$\mathrm{CSV}_{\mathrm{max}},\mathrm{CSV}_{\mathrm{min}}$	> 0.40, > 0.40	> 0.50, > 0.24	> 0.67, > 0.24
$N_{ m aj}$	-	_	$< 2 \ (-,-)$
$N_{ m al}$	= 0	_	= 0
$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}$	$> 80 \ (au)$	_	-
$\Delta \phi({ m V},{ m H})$	_	_	> 2.0
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{jet})$	_	_	$> 0.7 \ (> 0.7, > 0.5)$
$\Delta \phi(\mathrm{E_{T}^{miss}},\mathrm{trkMET})$	_	_	< 0.5
pfMET significance	_	_	> 3 (-,-)
$\Delta \phi(\mathrm{E_{T}^{miss}},\mathrm{lep})$	$<\pi/2$	_	_
Tightened Lepton Iso.	< 0.075 (-, -)	_	_

Strategy, BDT Training

- Separate BDTs trained in each channel and for each boost category
- Inputs used allow to exploit the complete kinematic information of the event.
- All variables are monitored in the CR, as well the outputs distribution
- VZ(jj) and VH are treated as backgrounds in the training.

Variable

 $p_T(j)$: transverse momentum of each Z(bb) daughter M(jj): dijet invariant mass $p_T(jj)$: dijet transverse momentum $p_{\rm T}({\rm V})$: vector boson transverse momentum (or ${\rm E}_{\rm T}^{\rm miss}$) CSV_{max} : value of CSV for the $Z(b\bar{b})$ daughter with largest CSV value CSV_{min} : value of CSV for the $Z(b\bar{b})$ daughter with second largest CSV value $\Delta \phi(V, H)$: azimuthal angle between V and dijet $\Delta \eta(jj)$: difference in η between $Z(b\bar{b})$ daughters $\Delta R(jj)$: distance in $\eta - \phi$ between $Z(b\bar{b})$ daughters $N_{\rm ai}$: number of additional jets $\Delta \theta_{\text{pull}}$: color pull angle [2] $\Delta \phi(E_T^{miss}, jet)$: azimuthal angle between E_T^{miss} and the closest jet (only for $Z(\nu\nu)$) maxCSV_{aj}: maximum CSV of the additional jets in an event (only for $Z(\nu\nu)$ and $W(\ell\nu)$) $\min \Delta R(H, aj)$: minimum distance between an additional jet and the $Z(b\bar{b})$ candidate (only for $Z(\nu\nu)$ and $W(\ell\nu)$) Angular variables: VZ system mass, Angle Z-Z*, Angle Z-l, Angle Z-jet (only for $Z(\ell \ell)$)

Strategy, multi BDT

• A background specific BDT training in the Zvv and $W(ev,\mu v)$ channels is performed to achieve a better discrimination of the signal.

- A series of BDTs is trained targeting 2 different backgrounds: tt and V+jets.
- The final discriminant is made of 3 regions:

Strategy, BDT

Separate BDTs trained in each channel and for each boost category, separately for e and μ :

- BDT: 2 Z(II)
- multi-BDT: 6 W(lv), 3 Z(vv)

Systematics

- Shape systematic
 - btag, JER, JES, trigger, generator modeling, bin-by-bin stats
- IogNormal systematic
 - SF, signal cross section

		Individual contributions to uncertainty	
Source of uncertainty	Туре	μ _{WZ} (%)	μ _{ZZ} (%)
Luminosity	norm	3.3	3.2
Lepton efficiency and trigger	norm	1.9	0.6
0-lepton triggers	dist	_	1.6
Jet energy scale	dist	7.2	6.4
Jet energy resolution	dist	6.1	5.9
$E_{\rm T}^{\rm miss}$	dist	3.3	1.8
b tagging	dist	7.7	5.7
VZ cross section (theory)	norm	13.4	13.4
Monte Carlo statistics	dist	5.5	3.6
Backgrounds (from data)	norm	12.5	11.5
Single-top and VH (from simulation)	norm	1.9	_
MC modeling of V+jets and tt	dist	4.7	4.8

Diboson Physics at 8 TeV

