

Probing mass hierarchy in reactor neutrino oscillations

Francesco Capozzi PhD Student Università degli Studi di Bari - INFN

Based on arXiv:1309.1638, Phys. Rev. D 89 (2014) 013001 with E. Lisi and A. Marrone

lstituto Nazionale di Fisica Nucleare

Medium baseline reactor v oscillations

Assuming 3 neutrinos there are 2 mass differences: $\delta m^2 > 0$, $\Delta m^2 \leq 0$

ONE POSSIBILE SOLUTION:

MBL reactors oscillations can probe the sign of Δm^2 (MASS HIERARCHY) through the tiny interference between δm^2 -driven long wavelength and Δm^2 -driven short wavelength oscillations at baseline $L \sim 50$ km.

REQUIREMENTS

Accurate description of nucleon recoil effects (usually ignored)

INVERSE β DECAY: $\overline{v}_e + p \rightarrow e^+ + n$

Example of spectrum for JUNO-like set-up

Statistical analysis

The true spectrum of events is calculated for global analysis best fit values of oscillation parameters and for a fixed hierarchy.

Non linear energy scale uncertainties $E \rightarrow E'$

Non linear $E \rightarrow E'$ transformations can mimic the wrong hierarchy at a slightly different Δm^2 :

$$\frac{\Delta m_{ee}^2 L}{2E} \pm \varphi(E) = \frac{\Delta m_{ee}^2 L}{2E'} \mp \varphi(E')$$

There is an infinite class of such transformations. One example of effects:

Now the best fit is at $\alpha = -1$, despite having assumed normal hierarchy. However, the χ^2 is large O(100), because there is a mismatch of reactor and geoneutrino spectra at low energy

If spectral errors $\delta(\Phi\sigma)$ are of the same order of the deviations $\Phi(E)\sigma(E) \rightarrow \Phi(E')\sigma(E')$ then the NH-IH degeneracy is almost complete with $\chi^2 \sim O(10)$

Conclusions

Medium baseline reactor experiments can probe the neutrino mass hierarchy. In this context we have shown:

How to include analitically the recoil effects of the nucleon

An analytical approximation of the oscillation probabilities including effects of matter and of multiple reactors.

Non linear $E \rightarrow E'$ transformations, togheter with spectral uncertainties, may mimic wrong hierarchy. However, this issue deserves further studies.

It is possible to condense hierarchy information in a continuous parameter α (+1=NH, -1 = IH). The distance between $\alpha = +1$ and $\alpha = -1$ is ~ 3σ in JUNO-like experiments.