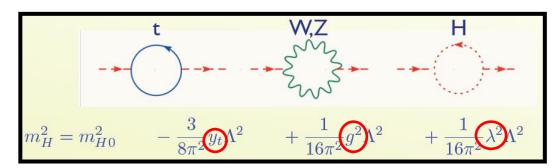
Model independent analysis of heavy vector-like top partners

Mathieu Buchkremer Université catholique de Louvain - Belgium

Moriond 2014 - Electroweak Session YSF - March 19th, 2014

Model independent analysis of heavy vector-like top partners

Based on:

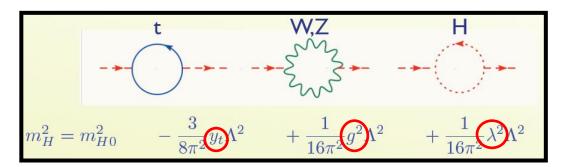

- M. B., G. Cacciapaglia, A. Deandrea, L. Panizzi, Model Independent Framework for Searches of Top Partners, Nucl. Phys. B876 (2013) 376-417, arXiv:1305.4172 [hep-ph].
- D. Barducci, A. Belyaev, M. B., G. Cacciapaglia, A. Deandrea, S. De Curtis, J. Marrouche, S. Moretti, L. Panizzi, Model Independent Analysis of Scenarios with Multiple Vector-like Quarks, in preparation.

Theoretical overview

Naturalness argument in crisis?

Let us assume that the SM remains valid up to a cut-off scale Λ (\simeq 10 TeV)

The top quark dramatically affects the stability of the scalar boson mass!


- Can we avoid fine-tuning in the Standard Model?
- (In)stability at Planck scale?
- ...

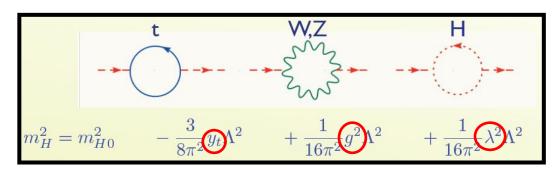
Theoretical overview

Naturalness argument in crisis?

Let us assume that the SM remains valid up to a cut-off scale Λ (\simeq 10 TeV)

The top quark dramatically affects the stability of the scalar boson mass!

- Can we avoid fine-tuning in the Standard Model?
- (In)stability at Planck scale?
- ...


⇒ Common procedure: introduce new heavy partners of the top quark, softening the quadratic divergence contribution to the SM scalar boson mass.

Theoretical overview

Naturalness argument in crisis?

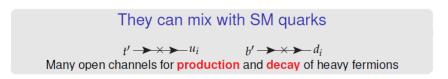
Let us assume that the SM remains valid up to a cut-off scale Λ (\simeq 10 TeV)

The top quark dramatically affects the stability of the scalar boson mass!

- Can we avoid fine-tuning in the Standard Model?
- (In)stability at Planck scale?
- ...

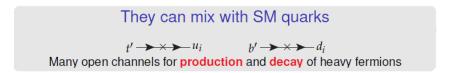
⇒ Common procedure: introduce new heavy partners of the top quark, softening the quadratic divergence contribution to the SM scalar boson mass.

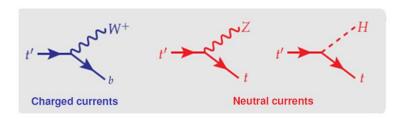
Top Partners appear in many New Physics models!


- Warped or universal extra-dimensions : as KK excitations of bulk fields,
- Composite Higgs models : as excited resonances of the bounded states,

provide smoking gun signatures as a common ingredient!

- Little Higgs models: as partners of SM fermions embedded in larger group representations (e.g., $SO(10)/SO(5)^2$...),
- Gauge-flavoured groups: as required for anomaly cancellation or mass generation,
- ..

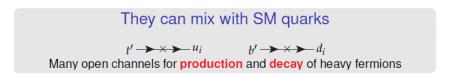

- ullet Top partners = Vector-like quarks = coloured spin 1/2 particles
- Vector-like quarks get their masses independently from electroweak symmetry breaking
- Vector-like quarks can couple to SM fermions via Yukawa interactions

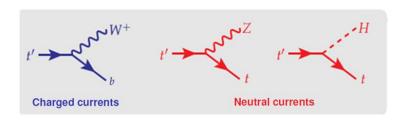


- Top partners = Vector-like quarks = coloured spin 1/2 particles
- Vector-like quarks get their masses independently from electroweak symmetry breaking
- Vector-like quarks can couple to SM fermions via Yukawa interactions

Exemple: Decays of a t' partner

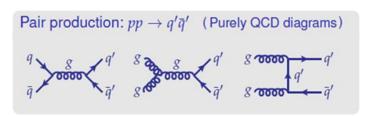
t'	Wb	Zt	ht
Singlet	50%	25%	25%
Doublet	~ 0%	50%	50%

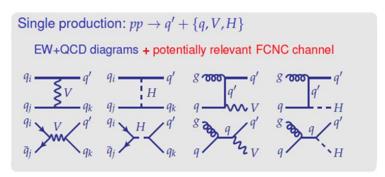

Remarks


- Branchings are never 100% in one channel.
- VLQ interactions are allowed through arbitrary Yukawa couplings.
- \implies Multiple decay modes (Wb, Wj, Zt, Zj, Ht, Hj) contribute to the signal region.

- Top partners = Vector-like quarks = coloured spin 1/2 particles
- Vector-like quarks get their masses independently from electroweak symmetry breaking
- Vector-like quarks can couple to SM fermions via Yukawa interactions

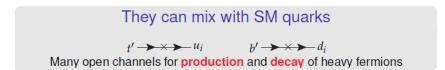
Exemple: Decays of a t' partner

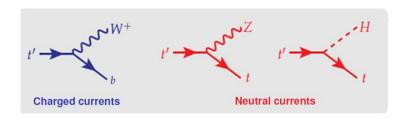

ť	Wb	Zt	ht
Singlet	50%	25%	25%
Doublet	~ 0%	50%	50%


Remarks

- Branchings are never 100% in one channel.
- VLQ interactions are allowed through arbitrary Yukawa couplings.
- \implies Multiple decay modes (Wb, Wj, Zt, Zj, Ht, Hj) contribute to the signal region.

Production

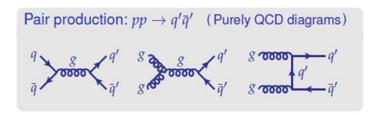


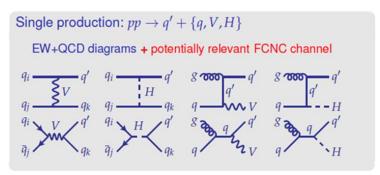

- Pair production, dominated by QCD and sentitive to the q' mass independently of the representation the q' belongs to
- Single production, only EW contributions and sensitive to both the q' mass and its mixing parameters

- Top partners = Vector-like quarks = coloured spin 1/2 particles
- Vector-like quarks get their masses independently from electroweak symmetry breaking
- Vector-like quarks can couple to SM fermions via Yukawa interactions

Exemple: Decays of a t' partner

ť	Wb	Zt	ht
Singlet	50%	25%	25%
Doublet	~ 0%	50%	50%


Remarks



- Branchings are never 100% in one channel.
- VLQ interactions are allowed through arbitrary Yukawa couplings.
- \implies Multiple decay modes (Wb, Wj, Zt, Zj, Ht, Hj) contribute to the signal region.

M. B., G. Cacciapaglia, A. Deandrea, L. Panizzi, *Model Independent Framework for Searches of Top Partners*, Nucl.Phys. B876 (2013) 376-417, arXiv:1305.4172

Production

- Pair production, dominated by QCD and sentitive to the q' mass independently of the representation the q' belongs to
- Single production, only EW contributions and sensitive to both the q' mass and its mixing parameters

Experimental limits (pair-production only):

- ATLAS-CONF-2013-018,-051,-056,-060: lower 95% CL limit on $m_{t'}$ between 670 and 790 GeV.
- ATLAS-CONF-2013-051,-056: lower 95% CL limit on $m_{b'}$ between 645 and 725 GeV.
- CMS-B2G-12-015: lower 95% CL limit on $m_{t'}$ between 687 and 782 GeV.
- CMS-B2G-12-019: lower 95% CL limit on $m_{b'}$ between 582 and 732 GeV.

Direct searches for pair-produced top partners now set stringent bounds!

Experimental limits (pair-production only):

- ATLAS-CONF-2013-018,-051,-056,-060: lower 95% CL limit on $m_{t'}$ between 670 and 790 GeV.
- ATLAS-CONF-2013-051,-056: lower 95% CL limit on $m_{b'}$ between 645 and 725 GeV.
- CMS-B2G-12-015: lower 95% CL limit on $m_{t'}$ between 687 and 782 GeV.
- CMS-B2G-12-019: lower 95% CL limit on $m_{b'}$ between 582 and 732 GeV.
- Direct searches for pair-produced top partners now set stringent bounds! ... But as for now:
 - ... they only consider exclusive couplings to a single family $(3^{ra}$ generation).
 - ... they neglect potentially large loop effects (e.g., mixing, interferences, ...).
 - ... they assume that only one new state beyond the Standard Model is present.

1

Experimental limits (pair-production only):

- ATLAS-CONF-2013-018,-051,-056,-060: lower 95% CL limit on $m_{t'}$ between 670 and 790 GeV.
- ATLAS-CONF-2013-051,-056: lower 95% CL limit on $m_{b'}$ between 645 and 725 GeV.
- CMS-B2G-12-015: lower 95% CL limit on $m_{t'}$ between 687 and 782 GeV.
- CMS-B2G-12-019: lower 95% CL limit on $m_{b'}$ between 582 and 732 GeV.
- Direct searches for pair-produced top partners now set stringent bounds! ... But as for now:
 - ... they only consider exclusive couplings to a single family $(3^{rd}$ generation).
 - ... they neglect potentially large loop effects (e.g., mixing, interferences, ...).
 - ... they assume that only one new state beyond the Standard Model is present.

Project: design a NLO tool extracting reliable bounds on realistic NP scenarios

- for any number of top partners.
- for any assumption on their mixing and branching ratio parameters.
- from any (available) search (SUSY, direct, ...), or combination thereof.

12

Experimental limits (pair-production only):

- ATLAS-CONF-2013-018,-051,-056,-060: lower 95% CL limit on $m_{t'}$ between 670 and 790 GeV.
- ATLAS-CONF-2013-051,-056: lower 95% CL limit on $m_{b'}$ between 645 and 725 GeV.
- CMS-B2G-12-015: lower 95% CL limit on $m_{t'}$ between 687 and 782 GeV.
- CMS-B2G-12-019: lower 95% CL limit on $m_{b'}$ between 582 and 732 GeV.
- Direct searches for pair-produced top partners now set stringent bounds! ... But as for now:
 - ... they only consider exclusive couplings to a single family $(3^{rd}$ generation).
 - ... they neglect potentially large loop effects (e.g., mixing, interferences, ...).
 - ... they assume that only one new state beyond the Standard Model is present.

Project: design a NLO tool extracting reliable bounds on realistic NP scenarios

- for any number of top partners.
- for any assumption on their mixing and branching ratio parameters.
- from any (available) search (SUSY, direct, ...), or combination thereof.

INPUT

- · Number of quarks
- · Masses
- Branching ratios

TOOL

that computes

CROSS-SECTIONS WEIGHTED WITH EFFICIENCIES AND BRS

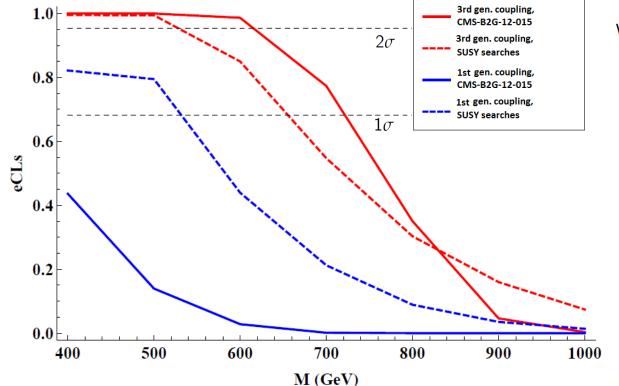
and therefore

NUMBER OF SIGNAL EVENTS

For each search (ATLAS,CMS)

OUTPUT EXCLUSION CONFIDENCE LEVEL

For each search (ATLAS,CMS) or for searches in combination


DATABASE OF EFFICIENCIES per bin, per mass, per channel For each search (ATLAS, CMS)

Exemple: SUSY searches vs. direct searches (CMS-B2G-12-015) for a T singlet

plemented se	(*)		
α_T 7 and 8 TeV	L _P (monolepton)	SS dileptons	OS dileptons
	7 TeV	7 and 8 TeV	7 TeV

• T with exclusive 3^{rd} gen. coupling: $BR(T \rightarrow Wb) : BR(T \rightarrow Zt) : BR(T \rightarrow Ht) \sim 50\% : 25\% : 25\%$

T with exclusive 1^{st} gen. coupling:

 $BR(T \rightarrow Wj) : BR(T \rightarrow Zj) : BR(T \rightarrow Hj)$

 \sim 50% : 25% : 25%

We observe that:

- the limits directly depend on the coupling assumptions
- 2 assuming exclusive 3rd generation coupling, the combination (*) set constraints in the same ballpark as CMS-B2G-12-015.
- assuming exclusive 1st generation coupling, the combination (*) set more stringent constraints than CMS-B2G-12-015.

14

Conclusions

Summary

- Vector-like quarks offer a rich phenomenology, with many channels left to explore at the LHC.
- The current bounds on vector-like quark masses are around 600-800 GeV, but scenarios with general mixing assumptions and multiple top partners are still unconstrained.
- Tool development for model-independent reinterpretations is ongoing, NLO results will soon be publicly available.
- Strong potential to improve the forthcoming analyses and exploit other BSM-inspired searches to test New Physics scenarios.
 Stay tuned

15

Backup

Experimental limits (CMS)

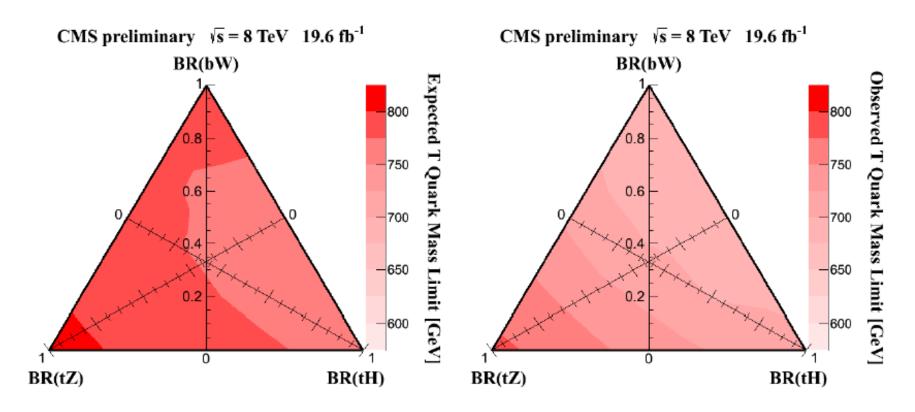
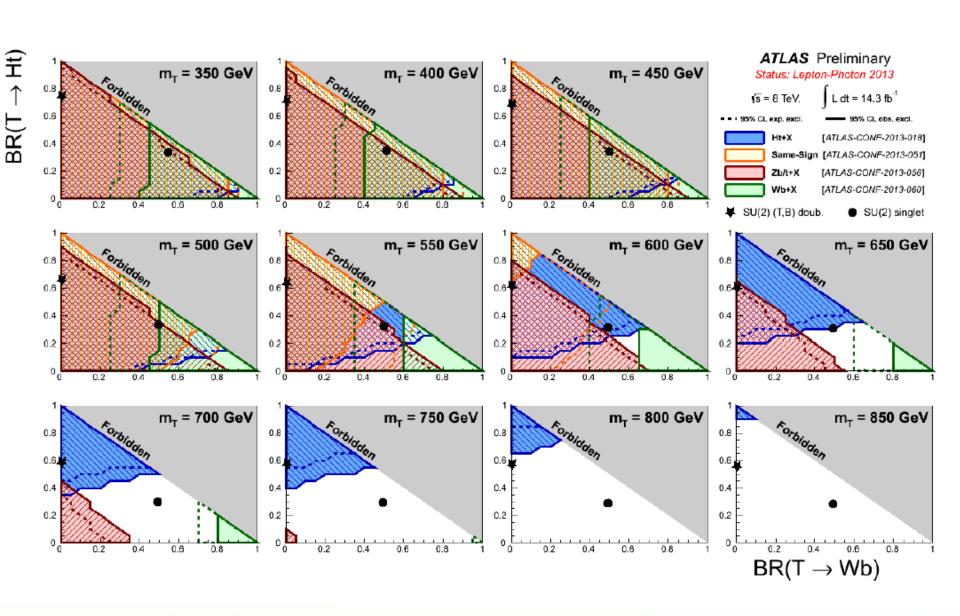



Figure 7: Branching fraction triangle with expected limits (left) and observed limits (right) for the T quark mass. Every point in the triangle corresponds to a particular set of branching fraction values subject to the constraint that all three add up to one. The branching fraction for each mode decreases from one at the corner labeled with the decay mode to zero at the opposite side of the triangle.

CMS PAS B2G-12-015

Experimental limits (ATLAS)

Vector-Like Quark representations

Representations and lagrangian terms

Assumption: vector-like quarks couple with SM quarks through Yukawa interactions

	SM	Singlets		Doublets		ts	Trip	lets
	$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$	(t')	(b')	$\begin{pmatrix} X \\ t' \end{pmatrix}$	$\begin{pmatrix} t' \\ b' \end{pmatrix}$	$\binom{b'}{Y}$	$\begin{pmatrix} X \\ t' \\ b' \end{pmatrix}$	$\begin{pmatrix} t' \\ b' \\ Y \end{pmatrix}$
$SU(2)_L$	2 and 1	1		2			3	
<i>U</i> (1) _Y	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3 -	-1/3	7/6	1/6	-5/6	2/3	-1/3
\mathcal{L}_{Y}	$-\frac{y_u^i v}{\sqrt{2}} \bar{u}_L^i u_R^i \\ -\frac{y_d^i v}{\sqrt{2}} \bar{d}_L^i V_{CKM}^{i,j} d_R^j$	$-rac{\lambda_u^i v}{\sqrt{2}}ar{u}_L^i U_R \ -rac{\lambda_d^i v}{\sqrt{2}}ar{d}_L^i D_R$		$-\frac{\lambda_u^i v}{\sqrt{2}} U_L u_R^i \\ -\frac{\lambda_d^i v}{\sqrt{2}} D_L d_R^i$		u_R^i d_R^i	$-\frac{\lambda_i v}{\sqrt{2}} \bar{u} \\ -\lambda_i v \bar{d}$	$_{L}^{i}U_{R}$ $_{L}^{i}D_{R}$
\mathcal{L}_m		-N	$I\bar{\psi}\psi$	(gauge	invari	ant sinc	e vector-lik	(e)
Free parameters		$\begin{array}{ c c c }\hline & 4 \\ M+3\times\lambda^i \end{array}$		1	$4 \text{ or } 7$ $3\lambda_u^i +$	I	M+3	$\times \lambda^i$

T

Vector-Like Quark representations

$$\mathcal{L}_M = -M\bar{\psi}\psi$$

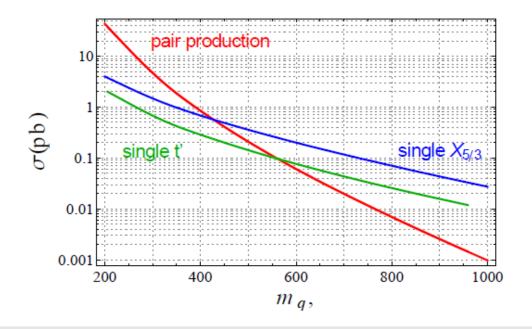
 $\mathcal{L}_M = -M \bar{\psi} \psi$ Gauge invariant mass term without the Higgs

Assumption: vector-like quarks couple with SM quarks through Yukawa interactions

They can mix with SM quarks

$$t' \longrightarrow \times \longrightarrow u_i$$

$$t' \longrightarrow \times \longrightarrow u_i$$
 $b' \longrightarrow \times \longrightarrow d_i$


Many open channels for **production** and **decay** of heavy fermions

D	D
D	П

Q_q	$(T_{2/3})$	$(B_{-1/3})$	$\begin{pmatrix} X_{5/3} \\ T_{2/3} \end{pmatrix}$	$\begin{pmatrix} T_{2/3} \\ B_{-1/3} \end{pmatrix}$	$\begin{pmatrix} B_{-1/3} \\ Y_{-4/3} \end{pmatrix}$	$\begin{pmatrix} X_{5/3} \\ T_{2/3} \\ B_{-1/3} \end{pmatrix}$	$\begin{pmatrix} T_{2/3} \\ B_{-1/3} \\ Y_{-4/3} \end{pmatrix}$
T_{3q}	0	0	1/2	1/2	1/2	1	1
Y	2/3	-1/3	7/6	1/6	-5/6	2/3	-1/3
$T \to Wb$	50%	-	0%	0%	-	50%	0%
$T \rightarrow Zt$	25%	-	50%	50%	-	25%	50%
$T \rightarrow Ht$	25%	-	50%	50%	-	25%	50%
$B \to Wt$	-	50%	-	100%	0%	0%	50%
$B \rightarrow Zb$	-	25%	-	0%	50%	50%	25%
$B \rightarrow Hb$	-	25%	-	0%	50%	50%	25%

Production channels

Pair vs single production, example with non-SM doublet $(X_{5/3} t')$

current **bounds from LHC** are around the region where (model dependent) **single production dominates**

pair production depends only on the mass of the new particle and decreases faster than single production due to different PDF scaling

4.

Model Independent Framework for Single VLQ Production

Full Lagrangian:

$$\mathcal{L} = \kappa_{T} \left\{ \sqrt{\frac{\zeta_{i}\xi_{W}^{T}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[\bar{T}_{L}W_{\mu}^{+} \gamma^{\mu} d_{L}^{i} \right] + \sqrt{\frac{\zeta_{i}\xi_{Z}^{T}}{\Gamma_{Q}^{0}}} \frac{g}{2c_{W}} \left[\bar{T}_{L}Z_{\mu}\gamma^{\mu}u_{L}^{i} \right] - \sqrt{\frac{\zeta_{i}\xi_{H}^{T}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[\bar{T}_{R}Hu_{L}^{i} \right] - \sqrt{\frac{\zeta_{3}\xi_{H}^{T}}{\Gamma_{H}^{0}}} \frac{m_{t}}{v} \left[\bar{T}_{L}Ht_{R} \right] \right\}$$

$$+ \kappa_{B} \left\{ \sqrt{\frac{\zeta_{i}\xi_{W}^{B}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[\bar{B}_{L}W_{\mu}^{-}\gamma^{\mu}u_{L}^{i} \right] + \sqrt{\frac{\zeta_{i}\xi_{Z}^{B}}{\Gamma_{Q}^{0}}} \frac{g}{2c_{W}} \left[\bar{B}_{L}Z_{\mu}\gamma^{\mu}d_{L}^{i} \right] - \sqrt{\frac{\zeta_{i}\xi_{H}^{B}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[\bar{B}_{R}Hd_{L}^{i} \right] \right\}$$

$$+ \kappa_{X} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[\bar{X}_{L}W_{\mu}^{+}\gamma^{\mu}u_{L}^{i} \right] \right\} + \kappa_{Y} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[\bar{Y}_{L}W_{\mu}^{-}\gamma^{\mu}d_{L}^{i} \right] \right\} + h.c.$$

$$BR(Q \to Vq_i) = \xi_V \zeta_i$$

Mass +

T: 4 parameters

B: 4 parameters

X: 2 parameters

Y: 2 parameters

$$\sum_{i=1}^{3} \zeta_i = 1 \qquad \sum_{V=W,Z,H} \xi_V = 1$$

M. B., G. Cacciapaglia, A. Deandrea, L. Panizzi, *Model Independent Framework for Searches of Top Partners*, Nucl.Phys. B876 (2013) 376-417, arXiv:1305.4172

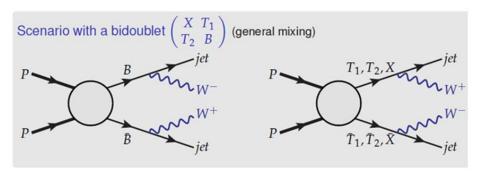
http://feynrules.irmp.ucl.ac.be/wiki/VLQ

Model Independent Framework for Single VLQ Production

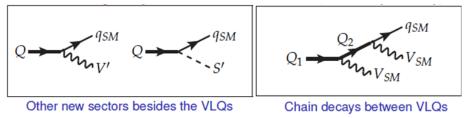
C00 C V		(fb)	i = 1
m = 600 GeV		$ar{\sigma}_{Wi}^{Tar{t}}$	893
		$ar{\sigma}_{Zi}^{Tar{t}}$	_
	Q+t	$\bar{\sigma}_{W_{\underline{i}}}^{Bt}$	2314
		$\bar{\sigma}_{W\underline{i}}^{Bt}$	_
		$\bar{\sigma}_{Wi}^{Xt}$	2277
Compendium of		$\bar{\sigma}_{Wi}^{Yt}$	936
cross-sections		$\bar{\sigma}_{Wi}^{Tj}$	34150
& distributions		$\bar{\sigma}_{Zi}^{Tj}$	48000
& distributions		-Bi	00500

for all the allowed

Q+j production channels Q+V

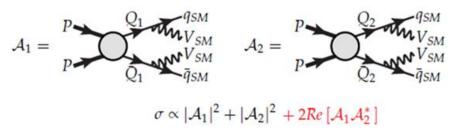

/fh\		$7~{ m TeV}$			$8 \mathrm{TeV}$			14 TeV	
(fb)	i = 1	i = 2	i = 3	i = 1	i = 2	i = 3	i = 1	i = 2	i = 3
$ar{\sigma}_{Wi}^{Tar{t}}$	893	68.4	20.7	1441	123	39.1	7580	985	373
$ar{\sigma}_{Zi}^{Tar{t}}$	_	_	4.22	_	_	6.28	_	_	2.47
$ar{\sigma}_{Zi}^{Tar{t}} \ ar{\sigma}_{Wi}^{Bt}$	2314	34.5	_	3605	64.5	_	16700	588	_
$\bar{\sigma}_{W_i}^{Bt}$	_	_	2.04	_	_	3.14	_	_	13.8
$\bar{\sigma}_{Wi}^{X\bar{t}}$	2277	33.9	7.01	3546	63.2	10.0	16640	578	33.6
$\bar{\sigma}_{Wi}^{Yt}$	936	71.2	22.3	1507	128	42.7	7911	1021	405
$ar{\sigma}_{Wi}^{Tj}$ $ar{\sigma}_{Tj}^{Tj}$	34150	4943	1906	45420	7316	2957	125000	29400	13970
$\bar{\sigma}_{Zi}^{Tj}$	48000	1770	_	63200	2760	_	171000	13400	_
$\bar{\sigma}_{W_i}^{Z_i}$ $\bar{\sigma}_{W_j}^{B_j}$	39500	1140	_	53000	2090	_	152000	10800	_
$\bar{\sigma}_{Zi}^{\dot{B}\dot{j}}$	22500	3030	1130	30400	4550	1790	91000	19600	9080
$\bar{\sigma}_{W_i}^{Z_i}$	72900	2950	_	94000	4520	_	232000	20400	_
$\bar{\sigma}_{Wi}^{Wi}$	18600	2290	831	25600	3510	1340	80500	16200	7250
$\bar{\sigma}_{Wi}^{TW}$ $\bar{\sigma}_{Wi}^{BW}$ $\bar{\sigma}_{XW}^{XW}$	1300	106	32.9	2070	187	60.9	10700	1420	545
$\bar{\sigma}_{Wi}^{BW}$	3270	53.5	_	5040	97.9	_	23400	840	_
v_{N_2}	3270	53.5	_	5040	97.9	_	23400	840	_
$\bar{\sigma}_{W,i}^{YW}$	1300	106	33.0	2070	187	60.9	10700	1420	545
$\bar{\sigma}_{Zi}^{TZ}$	3370	55.0	_	5200	101	_	24200	869	_
$egin{array}{l} ar{\sigma}_{Zi}^{TZ} \ ar{\sigma}_{Zi}^{BZ} \ ar{\sigma}_{Zi}^{TH} \ ar{\sigma}_{Hi}^{TJ} \end{array}$	1340	109	33.9	2130	193	62.6	11100	1470	563
$\bar{\sigma}_{Hi}^{TH}$	2460	34.5	_	3610	64.5	_	16900	588	_
$\bar{\sigma}_{Hi}^{BH}$	965	74.1	22.5	1560	133	42.4	8560	1090	409

The cross section for pair production is 170 fb


M. B., G. Cacciapaglia, A. Deandrea, L. Panizzi, Model Independent Framework for Searches of Top Partners, Nucl.Phys. B876 (2013) 376-417, arXiv:1305.4172

NLO results & other challenges

• A given final state can be feeded by different channels



Model-dependent decay chains must to be included

A dedicated simulation is required for these channels

Role of interferences is to be accounted for

Quantum mixing has to be treated properly

