BSM physics: Strong SuSy production searches at ATLAS & CMS

> Pedrame Bargassa LIP - Lisbon

> > Moriond EW 21 March 2014

ATLAS SUSY searches

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

	Model	e, μ, τ, γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	Mass limit	, , , , , , , , , , , , , , , , , , ,	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{qq}, \overline{q} \rightarrow q \widetilde{\chi}_1^0 \\ \overline{g} \widetilde{g}, \widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}_1^0 \\ \overline{g} \widetilde{g}, \widetilde{g} \rightarrow q q \widetilde{\chi}_1^0 \rightarrow q W^{\pm} \widetilde{\chi}_1^0 \\ \overline{g} \widetilde{g}, \widetilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu \widetilde{\chi}_1^0 \\ \text{GMSB} (\widetilde{\ell} \text{ NLSP}) \\ \text{GMSB} (\widetilde{\ell} \text{ NLSP}) \\ \text{GGM} (\text{bino NLSP}) \\ \text{GGM} (\text{bino NLSP}) \\ \text{GGM} (\text{higgsino-bino NLSP}) \\ \text{GGM} (\text{higgsino NLSP}) \\ \text{GR} (\text{higgsino NLSP}) \\ \text{Gravitino LSP} \\ \end{array} $	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \\ \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 5.8 10.5	^q , ĝ ^g ^q ^q ^q ^q ^q ^{1,2} TeV ^g ^{1,1} TeV ^q ^{1,1} TeV ^q ^{1,1} TeV ^q ^{1,1} TeV ^q ^{1,1} TeV ^g ^{1,2} TeV ^g ^g ^{1,2} TeV ^g ^{1,2} TeV ^g ^{1,2} TeV ^g ^{1,2} TeV ^g	1.7 TeV $m(\tilde{q})=m(\tilde{g})$ any $m(\tilde{q})$ any $m(\tilde{q})$ $m(\tilde{x}_1^0)=0$ GeV $m(\tilde{x}_1^0)=0$ GeV $m(\tilde{x}_1^0)=0$ GeV $m(\tilde{x}_1^0)=0$ GeV $\tan\beta < 15$ eV $\tan\beta < 18$ $m(\tilde{x}_1^0)>50$ GeV $m(\tilde{x}_1^0)>220$ GeV $m(\tilde{x}_1^0)>220$ GeV $m(\tilde{x}_1^0)>200$ GeV $m(\tilde{x}_1^0)=16$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 rd gen. <i>ἒ</i> med.	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ 1.2 TeV ğ 1.1 TeV ğ 1.34 Te ğ 1.37 Te	$\begin{array}{c} m(\tilde{\kappa}_{1}^{0})\!<\!6600~{\rm GeV} \\ m(\tilde{\kappa}_{1}^{0})\!<\!350~{\rm GeV} \\ \hline & m(\tilde{\kappa}_{1}^{0})\!<\!400~{\rm GeV} \\ \hline & m(\tilde{\kappa}_{1}^{0})\!<\!300~{\rm GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{array}{c} \overbrace{b_{1}}^{T} \overbrace{f_{1}}, \overbrace{b_{1}}^{T} \rightarrow b \widecheck{x}_{1}^{0} \\ \overbrace{b_{1}}^{T} \overbrace{b_{1}}, \overbrace{b_{1}}^{T} \rightarrow t \widecheck{x}_{1}^{\pm} \\ \overbrace{t_{1}}^{T} \overbrace{t_{1}}^{T} (light), \overbrace{t_{1}}^{T} \rightarrow b \widecheck{x}_{1}^{\pm} \\ \overbrace{t_{1}}^{T} \overbrace{t_{1}}^{T} (light), \overbrace{t_{1}}^{T} \rightarrow W b \widecheck{x}_{1}^{0} \\ \overbrace{t_{1}}^{T} \overbrace{t_{1}}^{T} (medium), \overbrace{t_{1}}^{T} \rightarrow t \widecheck{x}_{1}^{0} \\ \overbrace{t_{1}}^{T} \overbrace{t_{1}}^{T} (heavy), \overbrace{t_{1}}^{T} \rightarrow t \widecheck{x}_{1}^{0} \\ \overbrace{t_{1}}^{T} \overbrace{t_{1}}^{T} (heavy), \overbrace{t_{1}}^{T} \rightarrow t \overbrace{x}_{1}^{0} \\ \overbrace{t_{1}}^{T} \overbrace{t_{1}}^{T} (heavy), \overbrace{t_{1}}^{T} \rightarrow t \overbrace{x}_{1}^{0} \\ \overbrace{t_{1}}^{T} \overbrace{t_{1}}^{T} (heavy), \overbrace{t_{1}}^{T} \rightarrow t \overbrace{x}_{1}^{0} \\ \overbrace{t_{2}}^{T} \overbrace{t_{2}}^{T} (heavy), \overbrace{t_{1}}^{T} \rightarrow t \overbrace{x}_{1}^{0} \\ \overbrace{t_{2}}^{T} \overbrace{t_{2}}^{T} (heavy), \overbrace{t_{1}}^{T} \rightarrow t \overbrace{x}_{1}^{T} \\ \overbrace{t_{1}}^{T} (heavy) \\ \overbrace{t_{2}}^{T} \overbrace{t_{2}}^{T} \rightarrow t \overbrace{t_{1}}^{T} \rightarrow Z \\ \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1\text{-}2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\mathfrak{X}}_{1}^{0}) \! < \! 90 \text{GeV} \\ & m(\tilde{\mathfrak{X}}_{1}^{+}) \! = \! 2 m(\tilde{\mathfrak{X}}_{1}^{0}) \\ & m(\tilde{\mathfrak{X}}_{1}^{0}) \! = \! 55 \text{GeV} \\ & m(\tilde{\mathfrak{X}}_{1}^{0}) \! = \! 55 \text{GeV} \\ & m(\tilde{\mathfrak{X}}_{1}^{0}) \! = \! 0 \text{GeV} \\ & m(\tilde{\mathfrak{X}}_{1}^{0}) \! = \! 150 \text{GeV} \\ & m(\tilde{\mathfrak{X}}_{1}^{0}) \! = \! 150 \text{GeV} \\ & m(\tilde{\mathfrak{X}}_{1}^{0}) \! = \! 150 \text{GeV} \\ & m(\tilde{\mathfrak{X}}_{1}^{0}) \! = \! 180 \text{GeV} \end{split}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-045 1308.2631 ATLAS-CONF-2013-027 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R}\tilde{\ell}_{-R},\tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{1}\nu\tilde{\ell}_{1}(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{1}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 - 0 2 <i>b</i>	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}) \!=\! 0 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) \!=\! 0 \text{GeV}, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{+}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) \!=\! 0 \text{GeV}, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{+}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{+}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{+}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{+}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{2}^{0}) \!=\! 0, sleptons decoupled \\ m(\tilde{\chi}_{1}^{+}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, sleptons decoupled \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{X}_1^+ \tilde{X}_1^-$ prod., long-lived \tilde{X}_1^+ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau(\epsilon$ GMSB, $\tilde{X}_1^0 \rightarrow \gamma \tilde{G}$, long-lived \tilde{X}_1^0 $\tilde{q}, \tilde{X}_1^0 \rightarrow q q \mu$ (RPV)	Disapp. trk 0 $(\mu) 1-2 \mu$ 2γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	\$\tilde{X}_1^+\$ 270 GeV \$\tilde{S}\$ 832 GeV \$\tilde{X}_1^0\$ 475 GeV \$\tilde{X}_1^1\$ 230 GeV \$\tilde{q}\$ 1.0 TeV	$\begin{array}{l} m(\tilde{v}_1^+) \cdot m(\tilde{v}_1^0) {=} 160 \ {\rm MeV}, \ \tau(\tilde{x}_1^+) {=} 0.2 \ {\rm ns} \\ m(\tilde{v}_1^0) {=} 100 \ {\rm GeV}, \ 10 \ \mu {\rm s} {<} \tau(\tilde{g}) {<} 1000 \ {\rm s} \\ 10 {<} {\rm tan} \beta {<} 50 \\ 0.4 {<} \tau(\tilde{v}_1^0) {<} 2 \ {\rm ns} \\ 1.5 {<} c \tau {<} 156 \ {\rm nm}, \ {\rm BR}(\mu) {=} 1, \ m(\tilde{v}_1^0) {=} 108 \ {\rm GeV} \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e \tilde{v}_{\mu}, e \mu \tilde{v}, \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{v}_e, e \tau \tilde{v}, \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{\tau}_1 \rightarrow b s \end{array} $	$2 e, \mu 1 e, \mu + \tau 1 e, \mu 4 e, \mu 3 e, \mu + \tau 0 2 e, \mu (SS)$	7 jets - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c ccccc} \bar{y}_{r} & & & 1.6 \\ \bar{y}_{r} & & & 1.1 {\rm TeV} \\ \bar{q}, \bar{g}, \bar{g} & & & 1.2 {\rm TeV} \\ \bar{\chi}_{1}^{\pm} & & & 760 {\rm GeV} \\ \bar{\chi}_{1}^{\pm} & & & 350 {\rm GeV} \\ \bar{g} & & & & 916 {\rm GeV} \\ \bar{g} & & & & 880 {\rm GeV} \\ \end{array} $	11 TeV $\lambda'_{311}=0.10, \lambda_{132}=0.05$ $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$ $m(\tilde{q})=m(\tilde{g}), ct_{LSP}<1 mm$ $m(\tilde{\chi}_1^0)>300 \text{ GeV}, \lambda_{121}>0$ $m(\tilde{\chi}_1^0)>80 \text{ GeV}, \lambda_{133}>0$ BR(t)=BR(b)=BR(c)=0%	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-097
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	2 <i>e</i> , μ (SS) 0	4 jets 1 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi) {<} 80~{\rm GeV}, \ {\rm limit} \ {\rm of} {<} 687~{\rm GeV} \ {\rm for} \ {\rm D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	/s = 8 TeV artial data	√s = full	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

CMS SUSY searches

Outline & Scope

Disclaimer: 5+5 results among n for strong Susy production

- *Gluino* searches
- > **3**rd generation squarks searches
 - > The case for
- Stop & Sbottom searches
- "Naturalness"
- Conclusions & prospects

Results:

- Cover the 8 TeV data taking period: ~20 fb⁻¹
- Are with R_p conservation hypothesis
- 90% of cases: Based on simplified models

IF SUSY exists & IF LHC can produce it:

Gluino pair production: Most abundant source of SUSY production @ LHC

Understood to be a well explored avenue in SUSY searches...

LHC's energy reach allows $\tilde{\mathbf{g}} \rightarrow \mathbf{t} \mathbf{t} \tilde{\chi}_{1}^{0}$:

- Rather low background: 4tops
- Cross-checks across 5 final states in case of discovery
- <u>Hypothesis</u>: $m(\tilde{g}) \ll m(\tilde{q})$

Candle production- & decay-mode for \tilde{g} searches @ LHC

Type of searches

g

The case for 3rd generation squarks

MSSM lagrangian with soft breaking terms :

Quark left- & -right superpartners (scalars) can strongly mix to form mass eigenstates :

$$M_{\tilde{q}}^{2} = \begin{pmatrix} \tilde{M}_{Q}^{2} + M_{Q}^{2} + M_{Z}^{2}(\frac{1}{2} - \frac{2}{3}sin^{2}\theta_{W})cos2\beta & M_{Q}(A_{T} + \frac{\mu}{tan\beta}) \\ M_{Q}(A_{T} + \frac{\mu}{tan\beta}) & \tilde{M}_{U}^{2} + M_{Q}^{2} + \frac{2}{3}M_{Z}^{2}sin^{2}\theta_{W}cos2\beta \end{pmatrix}$$

 A_{T} : Tri-linear (stop) mixing term M_{Q} = SM quark mass

Mass difference of quark superpartners: Proportional to $M_0 = M_t$:

Strong mixing in the stops $\tilde{t}_{1,2}$ sector $\overbrace{t_1}^{\bullet}$ might be the lightest squark

Lightest Neutralino $\widetilde{\chi}_{1}^{_{0}}$ stable: Natural candidate for Cold Dark Matter

Observed $\Omega_{CDM}h^2 = 0.111 \pm 0.006 @ 95\%$ CL (WMAP) well explained IF $\delta m = m(\widetilde{P}) - m(\widetilde{\chi}_1)$ small: Co-annihilations dominate

$$\widetilde{\chi}_{1}^{0} \widetilde{t}_{1} \rightarrow tg, tH_{i}^{0}, bH^{+}$$

$$\widetilde{t}_{1} \widetilde{t}_{1}^{(*)} \rightarrow t\overline{t}, gg, H_{i}^{0}H_{j}^{0}, H^{-}H^{+}, b\overline{b}$$

Is stop/sbottom degenerate with LSP ?

Experimental look @

$\widetilde{\mathbf{t}}_1$ all hadronic: $\widetilde{\mathbf{t}}_1 \rightarrow \mathrm{t} \, \widetilde{\chi}_1^0$ decay mode

CMS PAS-SUS-13-015

Preselection:

- Lepton veto
- > $p_T(j_{1,2}) > 70 p_T(j_{3,4}) > 50 p_T(j_5) > 30 \text{ GeV/c}$
- ≻ N(b jet)≥1
- > $\Delta \phi(p_T(j_{1,2,3}), p_T^{\text{miss}}) > 0.5, 0.5, 0.3 \text{ rad.}$
- > Trigger: $p_T(j_{1,2}) > 50 \text{ GeV/c } \& p_T^{\text{miss}} > 80 \text{ GeV}$

Top reconstruction:

- ▶ *top1*: Full top reconstruction w 3 jets out of $\geq 5: 3$ -*jet*
- ► *top2*: Partial top reconstruction: Remnant jets out of ≥ 5 : *Rsys*
 - Gain signal acceptance while kinematically constraining top
- **Topological requirement:** Form 2 invariant transverse masses assuming invisible particles as massless:

$$M_{T}^{3-jet} = m(3-jet) \oplus p_{T}^{mis}$$

 $\succ M_{T}^{Rsys} = m(Rsys) \oplus p_{T}^{miss}$

Selection: Cut & Count

- > Topological cut on $(M_T^{3-jet}, M_T^{Rsys})$
- Signal Regions (SRs): Defined with N(b jet) & p_T^{miss}

\tilde{t}_1 all hadronic: Topological selection. Interpretation

 No excess observed in Data, further confirmed in SRs (backup)

- $\widetilde{\mathbf{t}}_1 \rightarrow \mathbf{t} \ \widetilde{\boldsymbol{\chi}}_1^0 \mathbf{w}$ on-shell top: Comparable sensitivity from other signatures
- $\widetilde{\mathbf{t}}_1 \xrightarrow{\rightarrow} \mathbf{t}^* \widetilde{\boldsymbol{\chi}_1^0} \mathbf{w}$ off-shell top: m($\widetilde{\mathbf{t}}_1$) < m(t)+m(LSP):

No sensitivity because top kinematics reconstruction

t̃₁ semi-leptonic: 2 decay modes & ∆m

t, **semi-leptonic:** Selection

Preselection:

- $p_{T}(e,\mu)>30 \text{ GeV/c}$
- ► N(jet)≥4 w $p_T(j)>30$ GeV/c
- ≻ N(b jet)≥1
- MET>100 GeV
- \sim M_T>150 GeV: Reduces ttbar(1*l*)

Selection:

Boosted Decision Tree

- Topological & kinematic variables fed to BDT
- Signal Regions (SRs): Specific BDT training / ∆m

 $\widetilde{\mathbf{t}}_1$ semi-leptonic: Interpretation for $\widetilde{\mathbf{t}}_1 \rightarrow \mathrm{t} \, \widetilde{\chi}_1^0$, b $\widetilde{\chi}_1^{\pm}$

- Sensitivity at low Δm : Selection variables independent of top reco.
- Specific BDT training for t* region: Sensitivity up to $m(\tilde{\chi}^0_1) \sim 180 \text{ GeV/c}^2$

m_{cr} [GeV]

 $\tilde{t}_1 \& \tilde{b}_1$: 0 lepton + 2b + MET

Pedrame Bargassa, Moriond EW 2014

≻

t₁ **& b**₁: Signal regions / Selections

<u>Hypothesis</u>: 3rd generation squarks decay exclusively via: $t_1 \rightarrow b \tilde{\chi}_1^{\pm}$

t₁ searches across decay-modes & signatures


```
Pedrame Bargassa, Moriond EW 2014
```

 $m_{\tilde{t}}$ [GeV]

Experimental look @ sbeauty

Pedrame Bargassa, Moriond EW 2014

b, **search**: Mainly based on b-tagging & m_{CT}

CMS PAS-SUS-13-018

Selection: Cut & Count

SR binned in $[m_{_{\rm CT}}, N(b)]$ to increase

Preselection:

- $N(jets) \ge 2 \le p_{T}(j) > 70 \text{ GeV/c}$
- N(b)≥1. $\Delta \phi(b_1, b_2) < 2.5$ if N(b)=2
- $H_{_{\rm T}}/{\rm MET} > 250/175~{\rm GeV}$
- $M_{_T}(j2,MET) > 200 \text{ GeV}$

"Naturalness": Stop and... Higgs

<u>Idea</u>: If only stop has O(GeV) mass among sParticles, close enough to Higgs: Enough to "stabilize" the Higgs mass problem

Explore SUSY scenarios, i.e. mass hierarchies, where $\tilde{t}_1 \&$ higgs/higgsinos are light

- ► Decoupled regime: h "SM like": h → $\gamma\gamma$, {H,H[±],A} much heavier
- Meanwhile: Start looking @ this physics within (more) constrained models...

"Natural SUSY": Masses of the stop & the higgsinos light

CMS PAS-SUS-13-014 ArXiv:1312.3310

- $\widetilde{\chi}_1^{\pm}$, $\widetilde{\chi}_{1,2}^{0}$: Almost pure Higgsinos \rightarrow Degenerate in mass
- Higgsino production mode:
 - > Direct: EW
 - > Strong $\tilde{t}_R \tilde{t}_R$ production
- Decay modes:
 - $\succ \widetilde{t}_{R} \rightarrow b \widetilde{\chi}_{1}^{\pm}, t \widetilde{\chi}_{1,2}^{0}$
 - $\begin{array}{ll} & \text{Degenerate } \widetilde{\chi}_{1}^{\ \pm}, \widetilde{\chi}_{1,2}^{\ 0}:\\ & \widetilde{\chi}_{1}^{\ \pm}, \widetilde{\chi}_{1,2}^{\ 0} \rightarrow W^{*}, Z^{*} \ \widetilde{\chi}_{1}^{\ 0} \rightarrow ff' \widetilde{\chi}_{1}^{\ 0} \end{array}$
 - $\begin{array}{lll} & \mbox{Model-dependance: GMSB:} \\ & \widetilde{\chi}_1^{\ 0} \rightarrow \widetilde{G} \ H: \ Dominates \ for \\ & \mbox{significant part of parameter} \\ & \mbox{space, including low } tan\beta, \\ & \mbox{and negative values of } \mu \end{array}$

<u>Final state</u>: HH, MET, +2b/2t for strong production

"Naturalness": Stop & Higgs

- Selection: At least one $H \rightarrow \gamma \gamma$: Take advantage of known m(H) C & C N(jet) \ge 2 from either other H, or \tilde{t}_{p} decays
 - > 2 satisfy loose b-tagging / At least one satisfies medium b-tagging
- 3 Signal regions:
- ≻ a) N(b)≥3: Larger Δm
- ▶ b) N(b)=2 & m(bb) \in [95,155] GeV → Small $\Delta m = m(\tilde{t}_R) m(H)$
- c) N(b)=2 & m(bb) off-Higgs mass: Larger Δm

Conclusions

8 TeV campaign: Opportunity for both experiments to cover *from* gluino *down to* 3rd generation squark searches

- **Gluino searches:** Now in the TeV/c² field...
- > 3rd generation searches:
 - Pertinent:
 - > Dynamic/Robust reason to be ~low mass if SUSY realized
 - Have a good profile in view of cosmological argument
 - Challenging:
 - › Low σ...
 - In cosmological scenario: Sitting on top/left-side of SM
 - > $\tilde{\mathbf{t}}_1/\tilde{\mathbf{b}}_1$: To be actively pursued during coming years...
 - \widetilde{t}_1 : Covered across 4 decay-modes !
 - > Domain of sensitivity: $m(\tilde{q}_{3}, \tilde{\chi}_{1}^{0}) < \sim (700, 300) \text{ GeV/c}^{2}$
 - > Trying to be as generic, i.e. as *case-covering*, as possible: Cover the same object through different:
 - > Decay-modes
 - > Masses of produced (\tilde{q}_3) / intermediate / final $(\tilde{\chi}_1^0)$ sParticles **Perspectives...**

Prospects on Stop: Illustration in $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ decay-mode

Backup slides

Pedrame Bargassa, Moriond EW 2014

31

SUperSYmmetry

"Generalize" the spin of known fields

SUperSYmmetry :

spin particle $\frac{1}{2} \leftrightarrow$ spin partner 0 spin particle 1 \leftrightarrow spin partner $\frac{1}{2}$

Names		spin 0	spin $1/2$	Names
squarks, quarks	Q	$(\widetilde{u}_L \widetilde{d}_L)$ \widetilde{u}^*	$(u_L d_L)$	gluino, glu
(×3 fammes)	$\frac{u}{\overline{d}}$	\widetilde{d}_R^*	$egin{array}{c} u_R \ d_R^\dagger \ d_R^\dagger \end{array}$	winos. W be
sleptons, leptons	L	$(\widetilde{ u} \ \widetilde{e}_L)$	(νe_L)	bino B bo
$(\times 3 \text{ families})$	\overline{e} $H_{\rm H}$	$\frac{\widetilde{e}_R^*}{(H^+ H^0)}$	$\frac{e_R^{\dagger}}{(\widetilde{H}^+ \ \widetilde{H}^0)}$	
	H_d	$ \begin{array}{c} (H_u & H_u) \\ (H_d^0 & H_d^-) \end{array} $	$ \begin{array}{c} (\widehat{H}_{u} & \widehat{H}_{u}) \\ (\widetilde{H}_{d}^{0} & \widetilde{H}_{d}^{-}) \end{array} $	

Names	spin $1/2$	spin 1
gluino, gluon	\widetilde{g}	g
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^0$
bino, B boson	\widetilde{B}^{0}	B^0

Observed SUSY particles with same mass than Standard-Model partners ? No !

SUSY : A broken symmetry ! Physical sParticles: Mixture of super-partners

- Charginos (χ^{\pm}) / Neutralinos (χ^{0}) : Bino/Wino \leftrightarrow Higgs (charged/neutral)
- > Squarks, Sleptons : Mixture of $f_L \leftrightarrow f_R$

SUperSYmmetry: Natural cure of hierarchy problem

- Admitting existence of a Higgs Boson
 - Considering Gauge boson scatterings at High-Energy
 - Requiring Unitarity of scattering amplitudes
 - $m_{\rm H} \sim O(100 \ {\rm GeV/c^2})$
- Consider Higgs mass correction from fermionic loop:

$$\underline{H}_{H} = \frac{\lambda_f^2}{16\pi^2} \cdot \left[-2\Lambda_{UV}^2 + \ldots\right]$$

 Λ_{UV} : Energy-scale at which new physics alters the Standard-Model (momentum cut-off regulating the loop-integral)

If $\Lambda_{UV} \sim M_p$ -> $\Delta m_H^2 \sim O(10^{30})$ larger than m_H^2 !!!

And all Standard-Model masses indirectly sensitive to $\Lambda_{_{\rm UV}}$!!!

$$\Delta m_H^2 = \frac{\lambda_f^2}{16\pi^2} \cdot \left[-2\Lambda_{UV}^2 + \ldots\right] \xrightarrow{\mathrm{H}} \left[-2\Lambda_{UV}^2 + \ldots\right]$$

 $\Delta m^2_{\ H}$ quadratic divergence cancelled : Hierarchy problem naturally solved !

3rd generation & Cold Dark Matter

Lightest Neutralino $\tilde{\chi}_{1}^{0}$ stable: Natural candidate for Cold Dark Matter $0.1 < \Omega_{CDM}h^{2} < 1$: "Reproduced" in most of SUSY parameter space... ...if $\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ annihilation : Only process changing N(Superparticles) IF : $\delta m = M(\tilde{P}) - M(\tilde{\chi}_{1}^{0})$ small, co-annihilations dominates $\rightarrow \Omega_{CDM}h^{2} \approx 0.1$

Exciting times for HEP in view of Cosmology Data: Is stop/sbottom degenerate with LSP ?

$\tilde{\mathbf{t}}_1$: Constraints from cosmology data

$\Omega_{_{CDM}}h^2 = 0.11 \pm 0.01$: Constraints the MSSM parameter space

t. : Which stop decays ?

Is c $\tilde{\chi}_{1}^{0}$ the only / best window to search for stops ?

Big contribution **if** $\log(\Lambda_{GUT}^2/M_W^2) \sim 65$: By choice ! MSSM: Squark mass unification at low energy...

 $|V_{bc}| \sim 0.05$

> Prefered at low $tan\beta$: Excluded by LEP Higgs searches

No SUSY so far...

Pedrame Bargassa, Moriond EW 2014

M₄ [GeV]

1000

1000

CMS detector

Tracker:

- > 13/14 silicon layers in Barrel (B) / End-Cap (EC)
- EM calorimeter:
 - PbWO₄ crystals, extremely dense & optically clear material

HAD calorimeter:

 Layers of dense material (brass or steel) interleaved with tiles of plastic scintillators

Magnet: 3.8T / Return yoke after...

Muon system:

- > Drift-Tube (B): Measure
- Cathod-Strip-Chamber (EC): Measure & Trigger
- Resistive-Plate-Chamber: Trigger

ATLAS detector

- **Inner detector:** Provide info about p_T & identity of charged particles:
 - > 3 layers of Pixel Detector
 - > 4 layers of SCT
 - > Transition Radiation Tracker
- **EM calorimeter:**
 - Liquid Ar / Lead + Stainless steel
- HAD calorimeter:
 - Steel / Scintillating tiles

Magnet:

- Inner solenoid: 2T
- > Outer toroid: $0.5 \rightarrow 1T$

Muon system:

- Magnetic field from 3 toroids
- > CSC, Monitored-DT, RPC
- For trigger: MDT, RPC

Searches motivated by models of new physics, including SUSY, that involve strong production processes & cascade decays producing many jets and missing momentum from unobserved, weakly interacting particles

3 lepton search: Outlook

3 lepton search: Results & Interpretations

Testing a $\underline{\tilde{t}}_1$ production via gluino pair production

3 lepton search: Results & Interpretations

Testing <u>direct \tilde{b}_1 pair production with $\tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$ decays</u>: To be as generic as possible, have to consider different $\tilde{\chi}_{1}^{\pm} \& \tilde{\chi}_{1}^{0}$ hypothesis:

3 lepton search: Results & Interpretations

b

Type of searches

"General" searches, Gluino oriented searches:

- Frequently high jet, missing energy
- Capture physics picture of long decay chains
- Decay chains can involve higher mass players
- Since many "SUSY actors" involved: They are frequently quite specific in masshierarchy, thus quite model-dependent

$$\bullet \ b \ \widetilde{\chi}^{0}_{2} \rightarrow b \ Z^{0} \ \widetilde{\chi}^{0}_{2}$$

Preselection:

- Lepton veto: ttbar & Wjets minimization
- > $p_T(j_{1,2}) > 70 p_T(j_{3,4}) > 50 p_T(j_5) > 30 \text{ GeV/c}$
- ≻ N(b jet)≥1
- > $\Delta \phi(p_T(j_{1,2,3}), p_T^{\text{miss}}) > 0.5, 0.5, 0.3 \text{ rad.: QCD suppression}$
- > Trigger: $p_T(j_{1,2}) > 50 \text{ GeV/c} + p_T^{\text{miss}} > 80 \text{ GeV}$

> Top reconstruction:

- ▶ top1: Full top reconstruction w 3 jets out of ≥ 5 : 3-jet
 - > $m(j_2j_3)/m(j_1j_2j_3)$, $m(12)/m(j_1j_2j_3)$, $m(j_1j_3)/m(j_1j_2j_3)$: Consistent with m(W)/m(top)
 - → $m(j_1j_2j_3) \in [80,270] \text{ GeV/c}^2$
 - Combinations: m(3-jet) closest to m(top) is selected
- > *top2*: Partial top reconstruction: Invariant mass of remnant jets out of ≥5: *Rsys*
 - No full kinematic reconstruction as above
 - > Differential reconstruction for N(jet) $\geq 3 \& = 2$
 - ► e.g. N(jet) ≥3: N(b jet)≥1 & m($j_m j_n$)_{m,n≠btag} ∈ [80,270] GeV/c²
- **Topological requirement:** Form 2 invariant transverse masses assuming invisible particles as massless:

$$M_{T}^{3-jet} = m(3-jet) \oplus p_{T}^{miss}$$

 $M_{T}^{Rsys} = m(Rsys) \oplus p_{T}^{miss}$

t₁ **all hadronic:** Topological selection

Hadronic decay of τ leptons produced in W boson decays:

- > Estimated from a data sample of μ +jets events with M_{T} < 100 GeV/c²
- > μ +jets & τ_h +jets arise from same process: Hadronic component of the two samples is the same except for the response of the detector to the muon or τ_h jet:

 μ in data replaced by a $\tau_{_h}$ with randomly sampled $p_{_T}\!,$ then differences of response corrected

Lost leptons from a W boson decaying to e or μ:

- Estimated from a μ +jets sample selected with same criteria as for search
- Corrected for IDentification & ISOlation efficiencies derived from Data

> Z boson decaying into neutrinos:

> $Z(\nu\nu)$ +jets simulation corrected with Scale-Factor, itself validated with $Z(\mu\mu)$ +jets events

Multijet production:

> Due to the p_T^{miss} & $\Delta \phi$ requirements, the QCD multijet background contribution in the search region is nearly negligible

t̃₁ all hadronic: Expected SM background & signals

Process	e, μ vetos	jet counting	$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\rm jet})$	$N_{\mathrm{b-jets}} \ge 1$	top reco. + kinematic cuts
tī	2652858 ± 746	626652 ± 363	364869 ± 277	314179 ± 257	229.7 ± 6.9
$W \to \ell \nu$	1097574 ± 624	38143 ± 122	24594 ± 98	4767 ± 43	28.6 ± 3.2
$Z \to \nu \bar{\nu}$	1053228 ± 425	9518 ± 27	6760 ± 23	1276 ± 10	28.2 ± 1.2
QCD	1955905397 ± 674400	85334931 ± 123627	48350298 ± 93847	9516527 ± 41181	116.4 ± 72.5
single top	1618682 ± 4685	51918 ± 623	29453 ± 468	24270 ± 433	24.4 ± 4.6
ttZ	2033 ± 6	1121 ± 5	676 ± 4	587 ± 3	9.3 ± 0.4
tĪW	2088 ± 7	1096 ± 5	645 ± 4	548 ± 4	3.3 ± 0.3
ZZ	280826 ± 99	2203 ± 9	1239 ± 7	524 ± 4	0.9 ± 0.2
WZ	490185 ± 179	4086 ± 16	2312 ± 12	757 ± 7	0.7 ± 0.2
WW	728425 ± 287	5435 ± 25	3076 ± 19	768 ± 9	0.9 ± 0.3
Total (no QCD)	7925899 ± 4817	740177 ± 732	433625 ± 554	347676 ± 506	325.9 ± 9.1
Signal (350, 0)	8802 ± 53	3113 ± 31	2505 ± 28	2200 ± 26	182.9 ± 7.6
Signal (500, 100)	927 ± 6	419 ± 4	360 ± 3	314 ± 3	85.9 ± 1.7
Signal (650, 50)	152 ± 1	75 ± 1	66 ± 1	58 ± 1	22.7 ± 0.4

t̃₁ all hadronic: Expected SM background & signals

	$p_{\rm T}^{\rm miss} > 200 { m GeV}$,	$p_{\rm T}^{\rm miss} > 350 { m GeV}$,	$p_{\rm T}^{\rm miss} > 200 { m GeV}$,	$p_{\rm T}^{\rm miss} > 350 { m GeV},$
	$N_{\mathrm{b-jets}} \ge 1$	$N_{\mathrm{b-jets}} \ge 1$	$N_{ ext{b-jets}} \geq 2$	$N_{ ext{b-jets}} \geq 2$
tī	153.8 ± 5.7	18.9 ± 2.0	63.4 ± 3.7	6.3 ± 1.2
$W \to \ell \nu$	22.9 ± 2.9	5.8 ± 1.4	3.9 ± 1.2	1.1 ± 0.6
$Z \to \nu \bar{\nu}$	25.0 ± 1.2	8.4 ± 0.6	4.6 ± 0.5	1.3 ± 0.2
QCD	1.1 ± 0.6	$0.0\substack{+0.5\\-0.0}$	$0.0\substack{+0.5 \\ -0.0}$	$0.0\substack{+0.5\\-0.0}$
single top	17.5 ± 3.9	5.2 ± 2.1	7.0 ± 2.5	1.8 ± 1.2
tīZ	7.8 ± 0.4	2.3 ± 0.2	4.2 ± 0.3	1.4 ± 0.2
tīW	2.4 ± 0.2	0.3 ± 0.1	1.1 ± 0.2	0.1 ± 0.1
ZZ	0.8 ± 0.2	0.3 ± 0.1	0.2 ± 0.1	$0.0\substack{+0.1 \\ -0.0}$
WZ	0.5 ± 0.2	0.1 ± 0.1	0.1 ± 0.1	$0.0^{+0.1}_{-0.0}$
WW	0.8 ± 0.3	0.1 ± 0.1	0.3 ± 0.2	$0.0^{+0.2}_{-0.0}$
Total (no QCD)	231.5 ± 7.6	41.2 ± 3.3	84.7 ± 4.6	12.0 ± 1.8
Data	254	45	83	15
Signal (350, 0)	162.8 ± 7.2	11.3 ± 1.9	84.4 ± 5.2	7.5 ± 1.5
Signal (500, 100)	83.2 ± 1.7	33.7 ± 1.1	48.1 ± 1.3	19.8 ± 0.8
Signal (650, 50)	22.4 ± 0.4	15.8 ± 0.3	13.1 ± 0.3	9.3 ± 0.2

t, single lepton: Selection variables: Kin. & Topo.

t₁ **single lepton**: Background determination

<u>Idea</u>: Use the M_T peak region, where we know well the SM background, to predict background in the tails

 $N_{predicted}(B) = N_{MC}(SR) . [N_{D}(peak)/N_{MC}(peak)] . [N_{MC}(SR)/N_{MC}(peak)]$

Acceptances depend on $\widetilde{\chi}_{1}^{\pm}$ polarization & $(\widetilde{\chi}_{1}^{\pm}W\widetilde{\chi}_{1}^{0})$ coupling in $\widetilde{t}_{1} \rightarrow b \widetilde{\chi}_{1}^{\pm}$ decays

 $\sqrt{s} = 8 \text{ TeV}, |Ldt = 19.5 \text{ fb}^{-1}$

Observed (unpolarized top)

Observed (right-handed top)

Observed (left-handed top)

CMS

 $pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}$

BDT analysis

[GeV]

° 100 € 300

400

350

250

200

150

100

50

- p_T(j1,2)>110,60 GeV/c: Keeps soft charm jets 'invisible' while maintaining a low QCD
- > MET>250 GeV
- Δφ(j1,j2)<2.5: Reduce QCD
 Δφ(j1,j2)<2.5: Λαθματρία φ(j1,j2)< Δφ(j1,j2)< Δφ
- Lepton veto
- Search performed in 7 inclusive bins of p_T(j1)

CMS

PAS-SUS-13-009

SR A:

۶

- Dominating background: Z+HF-jets / Z→vv
- W+HF-jets / W→l[±]: Non-reconstructed lepton or $l = \tau \rightarrow had$
- Control-regions w N(l)=1,2:
 - > N(l)=2: SF & OS dilepton w m(ll)∈[75,105]: Enriched in Z. $p_T(l)$ vectorially added to p_T^{miss} : Mimic expected MET from Z→vv events
 - > N(l)=1: $M_T \in [40,100]$: Enriched in ttbar & W+Jets

Contributions of ttbar, Z+Jets & W+Jets:

Simultaneously estimated with profile likelihood in 3 control-regions

CRA_1L	CRA_SF	CRA_DF
One e or μ	$e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$	$e^{\pm}\mu^{\mp}$
Veto additional le	epton candidates $(p_{\rm T}(e) > 7 {\rm GeV} p_{\rm T}(\mu))$	$) > 6 \mathrm{GeV})$
Only tw	to reconstructed jets with $p_{\rm T} > 50 {\rm GeV}$	I
$p_{\mathrm{T}}(j_1) > 130 \; \mathrm{GeV}$	$p_{\rm T}(j_1) > 50~{ m GeV}$	$p_{\mathrm{T}}(j_1) > 130 \; \mathrm{GeV}$
$p_{\rm T}(j_2) > 50~{ m GeV}$	$p_{\rm T}(j_2) > 50~{ m GeV}$	$p_{\mathrm{T}}(j_2) > 50 \; \mathrm{GeV}$
$E_{\rm T}^{\rm miss} > 100 {\rm GeV}$	$E_{\rm T}^{\rm miss}$ (lepton-corrected) > 100 GeV	$E_{\rm T}^{\rm miss} > 100{\rm GeV}$
T	we reconstructed <i>b</i> -jets $(p_{\rm T} > 50)$	
$40~{\rm GeV} < m_{\rm T} < 100~{\rm GeV}$	$75~{\rm GeV} < m_{\ell\ell} < 105{\rm GeV}$	$m_{\ell\ell} > 50 \mathrm{GeV}$
$m_{\rm CT} > 150 {\rm GeV}$	lepton $p_{\rm T} > 90 { m ~GeV}$	$m_{\rm CT} > 75 {\rm GeV}$
	$m_{bb} > 200 \mathrm{GeV}$	

SR B:

- > Dominating background: ttbar
- > W+HF-jets / W→l[±]

Contributions of ttbar & W+Jets:

Simultaneously estimated with profile likelihood in 2 control-regions

CRB_1L	CRB_SF
One e or μ	$e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$
Veto additional lepton can	didates $(p_{\mathrm{T}}(e) > 7 \mathrm{GeV} p_{\mathrm{T}}(\mu) > 6 \mathrm{GeV})$
Only three reconst	ructed jets with $p_{\rm T} > 30 {\rm GeV}$
$p_{\mathrm{T}}(j_1) > 130 \; \mathrm{GeV}$	$p_{\mathrm{T}}(j_1) > 50 \mathrm{GeV}$
$E_{\rm T}^{\rm miss} > 120 {\rm GeV}$	$E_{\rm T}^{\rm miss}({\rm lepton-corrected}) > 100 {\rm GeV}$
j_1 anti b-tag	ged; j_2 and j_3 b-tagged
$40 \text{ GeV} < m_{\mathrm{T}} < 100 \text{ GeV}$	$75~{\rm GeV} < m_{\ell\ell} < 105{\rm GeV}$
	Lepton $p_{\rm T} > 90 {\rm ~GeV}$
Н	$_{T,3} < 50 \mathrm{GeV}$

Channel		SRA	A, $m_{\rm CT}$ selec	tion		SRB
	$150{ m GeV}$	$200{ m GeV}$	$250{ m GeV}$	$300{ m GeV}$	$350{ m GeV}$	
Observed	102	48	14	7	3	65
Total SM	94 ± 13	39 ± 6	15.8 ± 2.8	5.9 ± 1.1	2.5 ± 0.6	64 ± 10
Top-quark	11.1 ± 1.8	2.4 ± 1.4	0.44 ± 0.25	< 0.01	< 0.01	41 ± 7
${\cal Z}$ production	66 ± 11	28 ± 5	11.4 ± 2.2	4.7 ± 0.9	1.9 ± 0.4	13 ± 4
W production	13 ± 6	4.9 ± 2.6	2.1 ± 1.1	1.0 ± 0.5	0.46 ± 0.26	8 ± 5
Others	4.3 ± 1.5	3.4 ± 1.3	1.8 ± 0.6	0.12 ± 0.11	$0.10\substack{+0.12\\-0.10}$	2.0 ± 1.0
Multijet	0.21 ± 0.21	0.06 ± 0.06	0.02 ± 0.02	< 0.01	< 0.01	0.16 ± 0.16

 m_{T2} : Generalization of m_{T} applied to signatures with 2 undetected particles, to further reduce the dileptonic tt background. For an event characterized by 2 one-step decay chains, a & b, each producing a missing particle C, the m_{T2} value of the event is defined by the minimization over all possible 2momenta, p_{Ta} , p_{Tb} , such that their sum gives the observed missing transverse momentum pT_{miss} : $m_{T2} \equiv \min_{\vec{p}_{Ta}} \{\max(m_{Ta}, m_{Tb})\}$

where $m_{Ti} = m_T$ of branch i for a given hypothetical allocation (p_{Ta}^C, p_{Tb}^C) of the missing particle momenta

ATLAS-CONF-2013-037

Background modeling: Each SR binned & shape-fit $L_{int} = 20.7 \ fb^{-1}$ $\sqrt{s} = 8 \text{ TeV}$ ATLAS Preliminary Total Fitted Background Data Signal $(m_{stop}, m_{LSP}) = (350, 150)$ 250 ± 57 174 ± 28 262 ± 34 18|235|16 **165** 25341 140 290 ± 60 145 ± 23 101 ± 26 ≥1 b-jet 2681191138 m_T (GeV) 8 15120 1535 ± 260 760 ± 120 695 ± 151 1521721663 132216 90 3122 ± 116 1962 ± 60 2591 ± 104 31221962259114191060 90 1289 ± 85 825 ± 56 1441 ± 103 b-jet veto 1289825 14411 4 60 100125150 E_{T}^{miss} (GeV)

- Multivariate techniques to combine information from the impact parameters of displaced tracks and topological properties of secondary and tertiary decay vertices reconstructed within the jet
- → 3 weights P_u , $P_b \& P_c$ targeting light-flavour & gluon, b- & c-quark jets
- > Anti-b & anti-u discriminators: Anti-b=log(P_c/P_b) Anti-u=log(P_c/P_u)
- Medium operating point: Anti-b>-1 Anti-u>-0.82
 - Efficiency(c-tag)~20%. Rejection(b/u/ τ) ~ 5/140/10
- Loose operating point: Anti-b>-1
 - Efficiency(c-tag)~95%. Rejection(b) ~ 2

- Z+jets→vv: Use MC normalized using data in control regions
- ▶ $W+jets \rightarrow l^{\pm}$: Use MC normalized using data in control regions
- ttbar:
 - Low Δm : ttbar negligible; taken from MC
 - High Δm : MC normalized in top-enriched control region, obtained mainly w b-tagging
- > WW, WZ, ZZ: Rather small; taken from MC
- > QCD: From Data
 - Sample of low-MET seed events is selected from data
 - Response function, R, quantifying the fluctuation in measured jet pT, is measured. R includes effects of jet mis-measurements & contribution from neutrinos in HF decays. Initial estimate of the response function is obtained from the MC
 - R modified by smearing seed events, until good agreement is observed between smeared data & data in control regions sensitive to this jet response
 - > Seed events are then smeared with the adjusted response function from (3).

$$N(Z(\rightarrow \nu\bar{\nu}) + jets)_{signal} = (N_{W\rightarrow\mu\nu,control}^{data} - N_{W\rightarrow\mu\nu,control}^{non-W}) \times \frac{N^{MC}(Z(\rightarrow \nu\bar{\nu}) + jets)_{signal}}{N_{W\rightarrow\mu\nu,control}^{MC}}$$

	M_{CT} <250 GeV	$250 < M_{CT} < 350 \text{GeV}$	$350 < M_{CT} < 450 \text{GeV}$	$M_{CT} > 450 \text{ GeV}$
	$N_{b-jets}=1$	$N_{b-jets}=1$	$N_{b-jets}=1$	$N_{b-jets}=1$
$Z(\nu\bar{\nu})$ +jets	$848 \pm 12 \pm 79$	$339 \pm 8.1 \pm 52$	$48 \pm 3.0 \pm 6.0$	$8.1 \pm 1.6 \pm 1.7$
Top+W($\ell \nu$)+jets	$645 \pm 24 \pm 57$	$381 \pm 17 \pm 38$	$36 \pm 4.9 \pm 5.7$	$7.8 \pm 2.6 \pm 2.0$
QCD	$25.3 \pm 9 \pm 5.2$	$16 \pm 7.4 \pm 2.8$	$1.0^{+1.2}_{-1.0}$	$1.0^{+1.2}_{-1.0}$
Rare processes	18 ± 9.2	18 ± 8.9	1.1 ± 0.5	0.3 ± 0.1
Total Background	1536 ± 102	754 ± 68	86±10	17 ± 4.1
Data	1556	807	101	23
		L		
	M_{CT} <250 GeV	$250 < M_{CT} < 350 \text{GeV}$	$350 < M_{CT} < 450 \text{GeV}$	$M_{CT} > 450$ GeV
	$M_{CT} < 250 \text{ GeV}$ $N_{b\text{-jets}} = 2$	$250 < M_{CT} < 350 \text{GeV}$ $N_{\text{b-jets}} = 2$	$350 < M_{CT} < 450 \text{GeV}$ $N_{b\text{-jets}} = 2$	$M_{CT} > 450 \text{ GeV}$ $N_{b\text{-jets}}=2$
$Z(\nu\bar{\nu})$ +jets	$M_{CT} < 250 \text{ GeV}$ $N_{b\text{-jets}} = 2$ $60 \pm 3.4 \pm 7.1$	$\begin{array}{c c} 250 < M_{CT} < 350 {\rm GeV} \\ N_{b\text{-jets}} = 2 \\ 28 \pm 2.4 \pm 3.8 \end{array}$	$350 < M_{CT} < 450 \text{GeV}$ $N_{b\text{-jets}}=2$ $3.9 \pm 0.9 \pm 1.0$	$M_{CT} > 450 \text{ GeV}$ $N_{b\text{-jets}}=2$ $0.7\pm0.6\pm0.6$
$Z(\nu\bar{\nu})$ +jets Top+W($\ell\nu$)+jets	$\begin{array}{r} M_{CT} <\!\!250 {\rm GeV} \\ N_{\rm b-jets} = 2 \\ 60 {\pm} 3.4 {\pm} 7.1 \\ 29 {\pm} 2.9 {\pm} 5.5 \end{array}$	$\begin{array}{c} 250 < M_{CT} < 350 {\rm GeV} \\ N_{\rm b-jets} = 2 \\ 28 \pm 2.4 \pm 3.8 \\ 17 \pm 2.5 \pm 3.3 \end{array}$	$\begin{array}{r} 350 < M_{CT} < \!$	$M_{CT} > 450 \text{ GeV}$ $N_{b\text{-jets}}=2$ $0.7\pm0.6\pm0.6$ 0.2 ± 0.2
$Z(\nu\bar{\nu})$ +jets Top+W($\ell\nu$)+jets QCD	$\begin{array}{r} M_{CT} <\!\!250 {\rm GeV} \\ N_{\rm b-jets} = 2 \\ 60 \pm 3.4 \pm 7.1 \\ 29 \pm 2.9 \pm 5.5 \\ 1.9 \pm 0.7 \pm 0.4 \end{array}$	$\begin{array}{c} 250 < M_{CT} < 350 {\rm GeV} \\ N_{b\text{-jets}} = 2 \\ 28 \pm 2.4 \pm 3.8 \\ 17 \pm 2.5 \pm 3.3 \\ 1.2 \pm 0.8 \pm 0.2 \end{array}$	$\begin{array}{r} 350 < M_{CT} < \!$	$\begin{array}{l} M_{CT} > 450 \text{ GeV} \\ N_{b\text{-jets}} = 2 \\ 0.7 \pm 0.6 \pm 0.6 \\ 0.2 \pm 0.2 \\ 0.1 \pm 0.1 \end{array}$
$Z(\nu\bar{\nu})$ +jets Top+W($\ell\nu$)+jets QCD Rare processes	$\begin{array}{c} M_{CT} <\!\!250 \ {\rm GeV} \\ N_{b\text{-jets}} =\!\!2 \\ 60 \pm 3.4 \pm 7.1 \\ 29 \pm 2.9 \pm 5.5 \\ 1.9 \pm 0.7 \pm 0.4 \\ 1.8 \pm 0.9 \end{array}$	$\begin{array}{c} 250 < M_{CT} < 350 {\rm GeV} \\ N_{b\text{-jets}} = 2 \\ 28 \pm 2.4 \pm 3.8 \\ 17 \pm 2.5 \pm 3.3 \\ 1.2 \pm 0.8 \pm 0.2 \\ 3.4 \pm 1.7 \end{array}$	$\begin{array}{r} 350 < M_{CT} < \!$	$\begin{array}{l} M_{CT} > 450 \text{ GeV} \\ N_{b\text{-jets}} = 2 \\ 0.7 \pm 0.6 \pm 0.6 \\ 0.2 \pm 0.2 \\ 0.1 \pm 0.1 \\ 0.1 \pm 0.1 \end{array}$
$Z(\nu\bar{\nu})$ +jets Top+ $W(\ell\nu)$ +jets QCD Rare processes Total Background	$\begin{array}{r} M_{CT} <\!\!250 \ {\rm GeV} \\ N_{b\text{-jets}} =\!\!2 \\ 60 {\pm} 3.4 {\pm} 7.1 \\ 29 {\pm} 2.9 {\pm} 5.5 \\ 1.9 {\pm} 0.7 {\pm} 0.4 \\ 1.8 {\pm} 0.9 \\ 93 {\pm} 10 \end{array}$	$\begin{array}{r} 250 < M_{CT} < 350 {\rm GeV} \\ N_{b\text{-jets}} = 2 \\ 28 \pm 2.4 \pm 3.8 \\ 17 \pm 2.5 \pm 3.3 \\ 1.2 \pm 0.8 \pm 0.2 \\ 3.4 \pm 1.7 \\ 50 \pm 6.4 \end{array}$	$\begin{array}{r} 350 < M_{CT} < \!$	$\begin{array}{c} M_{CT} > 450 \text{ GeV} \\ N_{b\text{-jets}} = 2 \\ 0.7 \pm 0.6 \pm 0.6 \\ 0.2 \pm 0.2 \\ 0.1 \pm 0.1 \\ 0.1 \pm 0.1 \\ 1.0 \pm 0.9 \end{array}$

"Naturalness": Stop and... Higgs

Idea: If only stop is low mass among sParticles: Enough to cure the hierarchy problem. One preferred phenomenological windows for this is:

Decoupled regime: Light h "SM like": $h \rightarrow \gamma\gamma$, {H,H[±],A} much heavier Coupling : $g_{h\tilde{t}\tilde{t}} = ... + [-m_{\tilde{t}}^2 + m_{\tilde{t}}\sin 2\theta_t (A_T + \mu/tan\beta)/2] / M_Z^2$

- ► $A_{T} \sim 0: \sigma(\tilde{t} \tilde{t} h) = 2 \sigma(\tilde{t}_{1} \tilde{t}_{1} h) \ge \sigma(tth)$
- $A_{_{T}}$ intermediate: Destructive interference
- A_{T} (very) large: $\sigma(\tilde{t}_1 \tilde{t}_1 h) > \sigma(tth)$ for $m(\tilde{t}_1) < 220 \text{ GeV/c}^2$

- For parts of SUSY "mass space" : $\sigma(\tilde{t}_1 \tilde{t}_1 h) \ge \sigma(tth)$
- → An experimental measure of $\Gamma(\text{ff' MET jj } \gamma \gamma) \Gamma_{_{SM}}(\text{tth}) \rightarrow$
 - Any significant deviation from $0 \rightarrow BSM$, pointing to t_1
 - > Test of scalar potential (soft breaking of SUSY)

Largest electroweak MSSM coupling

Diminish SM background:

- At least $H \rightarrow \gamma \gamma$: Take advantage of known m(H)
 - > Allows to use m($\gamma\gamma$) sidebands for estimation of the background from data, w/o sensitivity to exact composition of the background, which is dominated by QCD production of $\gamma\gamma$ bb events and γ b+jet events with jet misidentified as a γ
- > $E(\gamma_1, \gamma_2) > 45, 25 \text{ GeV}$
- $m(\gamma\gamma) \in$
 - > [120,131] GeV : Signal region
 - > [103,118] & [133,163] GeV: Lower & Upper side-band regions
- ▶ N(jet)≥2 from either other H, or t_R decays

"Naturalness": Stop & Higgs

Kinematic distributions before event categorization:

$m(\gamma\gamma)$ in the 3 Signal Regions:

View on 3rd generation squark **≠** Higgs sector:

