Recent Borexino results and prospects for near future

Recontres de Moriond 2014 Electroweak Interactions and Unified Theories La Thuile 15-22nd Mar 2014

Davide D'Angelo on behalf of the Borexino Collaboration Università degli Studi di Milano Istituto Nazionale di Fisica Nucleare, sez. di Milano

Borexino?

Experimental site

Laboratori Nazionali del Gran Sasso

Assergi (AQ) Italy 1400m of rock shielding ~3800 m.w.e.

Borexino backgrounds

lsotope	Typical	Required	Before purification	After purification
²³⁸ U	2 ·10 ⁻⁵ (dust)	≤ 10 ⁻¹⁶ g/g	$(5.3 \pm 0.5) \cdot 10^{-18} \text{ g/g}$	< 0.8 ·10 ⁻¹⁹ g/g
²³² Th	2 ·10 ⁻⁵ (dust)	≤ 10 ⁻¹⁶ g/g	$(3.8 \pm 0.8) \cdot 10^{-18} \text{ g/g}$	< 1.0 ·10 ⁻¹⁸ g/g
¹⁴ C/ ¹² C	10 ⁻¹² (cosmogenic)	≤ 10 ⁻¹⁸	(2.69 ± 0.06) ·10 ⁻¹⁸ g/g	unchanged
²²² Rn	100 atoms/ cm ³ (air)	≤ 10cpd/100t	~lcpd/100t	unchanged
⁴⁰ K	2 ·10⁻⁶ (dust)	$\leq 10^{-18} \text{ g/g}$	≤ 0.4 ·10 ⁻¹⁸ g/g	unchanged
⁸⁵ Kr	I Bq/m ³ (air)	≤ I cpd/100 t	(30 ± 5) cpd/100 t	≤ 5 cpd/100 t
³⁹ Ar	I7 mBq/ m³(air)	≤ I cpd/100 t	<< ⁸⁵ Kr	<< ⁸⁵ Kr
²¹⁰ Po		not specified	(~80) ~20 cpd/100 t	unchanged
²¹⁰ Bi		not specified	(~20) ~70 cpd/100 t	(20 ± 5) cpd/100 t

JINST 7(2012)P10018

Borexino calibration

2008-2011: 4 internal + 1 external calibration campaigns

Phys. Rev. Lett. 107, 141302 (2011)

⁷Be neutrino flux and A_{DN}

 $46.0 \pm 1.5(stat)^{+1.5}_{-1.6}(syst) / d / 100t$

for the first time the experimental error (4.8%) is smaller then theoretical error (7%)

 ϕ_{Be} = (3.10 ± 0.15) × 10⁹ cm⁻²s⁻¹ P_{ee} = 0.51 ± 0.07 at 0.862 MeV

Phys. Lett. B 707, 1 (2012) 22-26

$$A_{DN} = \frac{N - D}{(N + D)/2} = 0.001 \pm 0.012 \,(stat) \pm 0.007 (sys)$$

Then solar neutrino results with Borexino can isolate the LMA region without the Kamland antineutrino data

Rencontres de Moriond 2014 – Borexino results and prospects D. D'Angelo for the Borexino Collaboration 10

PRD 82 (2010) 033006

⁸B flux at 3MeV

Phys. Rev. Lett. 108, 051302 (2012)

pep flux and CNO limits

Comparison with SSM: the metallicity puzzle

SHP11: A.M. Serenelli, W. C.Haxton and C. Pena-Garay, Astro-phys. J. 743 (2011) 24

GS98: N. Grevesse and A. J. Sauval, Space Sciences Reviews 85, 161 (1998)

AGSS09: Aldo M. Serenelli *et al 2009 ApJ 705 L123*

⁷Be and ⁸B currently cannot discriminate

need to go for CNO

Diff. ν % 0.8 рр 2.1 pep ⁷Be 8.8 ⁸B 17.7 13N 26.7 15**O** 30.0 17**F** 38.4

⁷Be- ν annual modulation

Frequency [1/year]

Lomb-Scargle SPD

3σ

SPD (1 year) = 7.96

2.5

1.5

2 σ

1σ

⁷Be- ν annual modulation

Phase I, ~ 850d astr. time .omb-Scargle SPD 7000 Counts / 145 ton / 60 days Data counts in 60 days bins 6500 Charge 105-380 p.e., (~500 p.e/ 1 MeV) 6000 5500 5000 0.5 Expected (seasonal + +4500 bkgr evolution) Entries / 10⁴ simulations / 0.05 SPD 450 4000 400 01/08 04/08 07/08 10/08 12/08 04/09 07/09 10/09 12/09 04/10 350 Date [mm/yy] 300 $\left| R = R_0 + R_{Bi} e^{\Lambda_{Bi} t} + \overline{R} \right| 1 + 2\varepsilon \cos\left(\frac{2\pi}{T} - \phi\right) \right|$ 250 200 150 100 independently determined $T=1year\pm0.07$ 50 φ=(0±l4)d No seasonal escluded Monte Carlo distribution of the Spectral **R**, ε , within 2σ at > 3σ Power Density (SPD) with real S/B ratio from expected values

JCAP08(2013)049

Cosmogenic Backgrounds

	LNGS	Experiment	Year	l 0 ⁻⁴ μ m ⁻² s ⁻¹	μ m ⁻² d ⁻¹
Cosmic Muons in LNGS	Hall A	LVD	2009	3.31±0.03	28.5±0.2
	Hall B	MACRO	1995	3.22±0.08	27.8±0.7
	Hall C	BOREXINO	2012	3.41±0.01	29.46±0.08

Cosmogenic neutron production in organic liquid scintillator: Yield = $(3.10\pm0.07_{stat}\pm0.08_{syst})$ $10^{-4} \text{ n/(} \mu \text{ g/cm}^2\text{)}$ Flux = $(7.31\pm0.17_{stat}\pm0.19_{syst})$ n/m²/d

JCAP08(2013)049

Isotopes productions rates (compared with simulations)

Borexino and surrounded area simulated with Fluka and 4 Geant4 physics list Muon energy and angular distributions from MACRO $\mu^+/\mu^- = 1.38$ from OPERA

Fluka and Geant4 reproduce results satisfactorily

notable exceptions like ¹²B and ¹¹C

Rencontres de Moriond 2014 – Borexino results and prospects D. D'Angelo for the Borexino Collaboration 18

Phase II program

\succ pp- ν flux measurement:

- first direct observation of neutrinos from the primary proton-proton fusion reaction taking place in the Sun's core.
- > Precision pep- ν neutrino measurement (> 3 σ).
- > Measurement (or strong limits) on CNO ν flux:
 - first confirmation of fusion process that powers most stars.
 - can help resolve the solar "metallicity problem".
- > ⁷Be- ν neutrino flux measurement at 3% and seasonal variation.
- > Geo- ν flux measurement with higher statistics.
- \succ ⁸B- ν measurement with x4 statistics (aiming 10%).
- Measurements with artificial neutrino sources: Project SOX: Short distance Oscillations with BoreXino.
 - search for sterile neutrino
 - measurement of neutrino magnetic moment

2014

2015

2016-17

2015

2016

Number of anti-neutrinos per MeV per parent

10

10

10⁻¹

10

Geo-neutrinos

 $\Phi_{\bar{v}} \sim 10^6 \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$

Geo-neutrinos: event selection

PLB 722 (2013) 295

Geo-neutrinos: implications

$S_{\text{Expected}} = S_{\text{LOCal}} + S_{\text{Rest Of Crust}} + S_{\text{Mantle}}$									
	LOC (TNU)	ROC (TNU)	DATA (TNU)	MANTLE (TNU)	U+Th (TW)				
Kamland	17.7±1.4	7.3±1.4	31.1±7.3	6.1±7.6	13±9				
Borexino	9.7±1.3	13.7 ±2.5	38.8±12.0	15.4±12.3	23±14				

Assuming homogeneous mantle: Borex + KamLAND (Nature 2011) 14.1 + 8.1 TNU

1 TNU = 1 event / 10³² protons / year

80cm

If reactor anomaly is interpreted in terms of oscillations into light sterile neutrinos it points to $L/E \sim Im/MeV$

in Borexino with \sim I MeV source: resolution ~ 15 cm < L < detector size ~ 10 m

Pit

100cm Tunnel Rencontres de Moriond 2014 – Borexino results and prospects D. D'Angelo for the Borexino Collaboration 24

β-

75-150

kCi

Fission

product

¹⁴⁴Ce-¹⁴⁴Pr

<3MeV

411d

0.314

7.6

JHEP 08 (2013) 038

SOX ⁵¹Cr run

- Source obtained by irradiation of the source used in Gallex
 - 38% enrichment.
- Mayak (Ru) vs. Oakridge (USA)
 - Both option are in the negotiations.
 - Source needs quick transportation!
- Source size ~15cm: comparable to position resolution
- Need to know FV at 1%:
 - ok (via calibrations).
- Need to know activity at 1%:
 - via Heat: calorimeter under design.
 - Gallex made 2%.
- Need to have constant backgrounds: currently so.

tentative schedule: spring 2015 run for 3 months

Distance from the source [m]

 $\sin^2(2\Theta_{14})=0.3$ and $\Delta m^2_{41}=2 \text{ eV}^2$. Activity: 370PBq (10MCi) Data taking: 90d

The oscillatory behavior allows to reconstruct Θ_{14} and Δm^2_{41}

Sensitivity can be enhanced by short life-time of the ⁵¹Cr.

SOX ¹⁴⁴Ce-¹⁴⁴Pr run

- Source can be produced out of spent nuclear fuel in Mayak (Ru).
- Larger anti-nu cross section.
- Problem with 2.1 MeV gamma: needs tungsten shielding.
- Very hot: needs cooling.

tentative schedule: late 2015 run for 1.5 year

JHEP 08 (2013) 038

Conclusions

- Borexino detector is taking data since 2007 and is now its phase II.
 - The background levels are unprecedented and are still improving.
- Phase I brought fundamental results over a broad range of solar neutrinos (⁷Be, ⁸B, pep, CNO limits) and geo neutrinos.
- First Phase II result: pp-neutrino flux
 - to be released this year.
- Phase II next goal will be a measurement of CNO fluxes.
 - along with more stringent measurement of ⁷Be, ⁸B, pep, and geo.
- SOX project will test the Reactor Anomaly region for oscillations into sterile neutrinos.
 - a ⁵¹Cr and a ¹⁴⁴Ce-¹⁴⁴Pr sources will be placed under the detector in 2015-16.
 - after solar run: eventually place Ce source inside.

Energy production in the sun

PP-chain >99% energy production 5 ν species

CNO-cycle <1% energy production 3 ν species

