XLIX Rencontres de Moriond Electroweak Interactions and Unified Theories March 15th-22nd 2014, La Thuile, Italy

LHCD

CÉRN

Angelo Di Canto (CERN) on behalf of LHCb

Why is charm charming?

- Unique and powerful probe of BSM flavor effects
- Charm quark is up-type: complements searches done in K and B systems, interplays with high-p_T (top physics) and low-energy (EDMs) probes
- SM effects are <10⁻³ due to CKM/GIM suppressions: calls for O(1M) yields and control over systematics
- Predictions are hard: charm is a discovery tool not a precision probe
- Only recently reached sensitivity to possible BSM physics

Direct CP violation

First evidence of direct CPV in charm?

 Intriguingly large difference between the asymmetries of neutral charm mesons decaying into pairs of charged pions and kaons

$$\Delta A_{\rm CP} = A_{\rm CP}(K^+K^-) - A_{\rm CP}(\pi^+\pi^-)$$

- At odds with expectations... but picture is still blurry
- Wrong expectations? Wrong measurements? Both? Something new sneaking in?

Update with full Run I dataset in progress

Search for CPV in multibody decays

- Exploit enriched dynamics of multi-body decays to seek enhancements of CPV in subregions of the phase space. Could go unnoticed in measurements of global asymmetries
- Insensitive to global asymmetries (physical or spurious)
- Study phase-space-dependent production/detection asymmetries with CF decays (in the SM, direct CPV can only occur in SCS decays)

Search for local CPV across Dalitz plot

- Compute local CP asymmetry in different bins of the Dalitz plot
- No CPV means that distribution of local asymmetry is gaussian with zero mean and unit sigma

• Get p-value from
$$\chi^2 = \sum_i (S^i_{\rm CP})^2$$

- Test several binning schemes (same number of events/same strong phase)
- With 2011 data sensitive to 1°-10° differences in phase and 1-10% in magnitude

Binned (a.k.a. Miranda) method

Local CPV in multibody decays — Results

PRL 111 (2013) 251801

Mixing and CPV with $D^0 \rightarrow K^+\pi^-$

- Built upon previous iteration of the analysis
 [PRL 110 (2013) 101802] with full Run I dataset
- Reconstruct RS and WS decays using D* to identify flavor at production

- Fit ratio of WS/RS yields in bins of decay time to separate mixing from DCS contribution
- Fit D^{*+} and D^{*-} independently to search for CPV

Mixing and CPV with $D^0 \rightarrow K^+\pi^-$ – Results

• Time-dependent WS/RS ratio:

$$R^{\pm} \approx R_D^{\pm} + \sqrt{R_D^{\pm}} y'^{\pm} \left(\frac{t}{\tau}\right) + \frac{x^2 + y^2}{4} |q/p|^{\pm 2} \left(\frac{t}{\tau}\right)^2$$

$$y'^{\pm} = |q/p|^{\pm 1} \left[y \cos(\delta \pm \phi) \mp \sin(\delta \pm \phi)\right]$$

$$R_D^{\pm} = R_D (1 \pm A_D)$$

Indirect CPV (|q/p|≠1 or φ≠0) if difference
 between ratios varies vs time:

0.75 < |q/p| < 1.24@68.3% CL

• Direct CPV in DCS decay if nonzero intercept:

 $A_D = (-0.7 \pm 1.9)\%$

World's best bound on CPV in charm mixing and in DCS decays

10

WS mixing and CPV – Results

Precision on mixing parameters improved by 2.5× wrt our previous result [PRL 110 (2013) 101802]

	$R_D \ (10^{-3})$	$y' (10^{-3})$	$x'^2 (10^{-3})$
LHCb	3.568 ± 0.066	4.8 ± 1.0	0.055 ± 0.049
BaBar	3.03 ± 0.19	9.7 ± 5.4	-0.22 ± 0.37
Belle	3.53 ± 0.13	4.6 ± 3.4	0.09 ± 0.22
CDF	3.51 ± 0.35	4.3 ± 4.3	0.08 ± 0.18

LHCb: PRL 111 (2013) 251801 BaBar: PRL 98 (2007) 211802 Belle: arXiv:1401.3402 CDF: PRL 111 (2013) 231802

Effective-lifetime asymmetry

 Measure asymmetry between effective lifetimes of SCS D*-tagged D⁰→K⁺K⁻ (~3M) and D⁰→π⁺π⁻ (~1M) decays

$$A_{\Gamma} = \frac{\hat{\tau}(\overline{D}^{0}) - \hat{\tau}(D^{0})}{\hat{\tau}(\overline{D}^{0}) + \hat{\tau}(D^{0})}$$
$$\approx \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi \right]$$

- Nonzero if indirect CPV occurs
- Evaluate acceptance vs decay-time for each candidate using only data
- Validate analysis on larger sample of CF
 D⁰→K⁻π⁺ decays

Effective-lifetime asymmetry — Results

Impact on world average

Conclusions

- Charm is a unique probe of BSM couplings to up-quark sector
- LHCb leads thanks to O(1M) charm decays collected
 - Shown today, world's best determination of mixing and bounds on CPV
- Much more to come as Run I
 dataset still being analyzed
- Getting ready for upcoming LHC runs and for challenging the SM with precision measurements of charm dynamics...

Backup slides

Hadronic charm decays at LHCb

Silicon Vertex Locator: 20 µm impact parameter resolution, corresponding to ~45 fs decay-time resolution for a 2-body charm decay

Excellent tracking: $\Delta p/p = 0.4-0.6\%$ at 5-100 GeV/c, corresponding to ~8 MeV/c² mass resolution for a 2-body charm decay

Trigger on hadronic charm decays

HFAG results

Parameter	No CPV	No direct CPV	CPV-allowed	CPV-allowed
		in DCS decays		95% CL Interval
x (%)	$0.53^{+0.16}_{-0.17}$	$0.43^{+0.15}_{-0.16}$	$0.39^{+0.16}_{-0.17}$	[0.03, 0.68]
y~(%)	0.67 ± 0.09	$0.65\ \pm 0.08$	$0.67 \ ^{+0.07}_{-0.08}$	[0.50, 0.81]
$\delta_{K\pi}$ (°)	$14.0^{+9.3}_{-10.5}$	$11.2{}^{+10.2}_{-11.8}$	$12.5{}^{+9.4}_{-11.0}$	[-13.2, 30.5]
R_D (%)	0.350 ± 0.004	0.349 ± 0.004	0.349 ± 0.004	[0.342, 0.357]
A_D (%)	_	_	-0.95 ± 1.0	[-3.0, 1.0]
q/p	_	1.01 ± 0.01	$0.91 {}^{+0.11}_{-0.09}$	[0.76, 1.14]
ϕ (°)	_	$-0.3 {}^{+0.5}_{-0.6}$	$-10.8{}^{+10.5}_{-12.3}$	[-37.4, 9.9]
$\delta_{K\pi\pi}~(^\circ)$	$19.6^{+22.8}_{-23.4}$	$23.6{}^{+23.7}_{-24.2}$	$26.8 {}^{+24.2}_{-24.5}$	[-21.5, 74.7]
A_{π}	—	0.17 ± 0.15	0.18 ± 0.15	[-0.12, 0.47]
A_K	_	-0.16 ± 0.13	-0.15 ± 0.14	[-0.43, 0.12]
$x_{12} \ (\%)$	_	$0.43^{+0.15}_{-0.16}$		[0.10, 0.71]
$y_{12} \ (\%)$	—	0.65 ± 0.08		[0.49, 0.80]
$\phi_{12}(^{\circ})$	—	$1.0 {}^{+2.0}_{-1.7}$		[-3.0, 7.8]