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Forty years after its introduction lattice Quantum Chromodynamics (LQCD) is nowadays a
reliable method to study the nonperturbative regime of strong interactions, which is of vital
interest for flavor physics phenomenology of the Standard Model (SM) and beyond. After long
and painstaking efforts, thanks to a striking hardware and algorithmical evolution, the LQCD
methods entered an era in which all the main sources of systematic uncertainties affecting
a typical LQCD simulation can be kept under control. The increasing reliability of LQCD
results opens the possibilities for new precision tests in the flavor sector of SM. In that respect,
I illustrate in this talk the impact of recent improvement of LQCD on the phenomenology. A
particular attention is given to leptonic and semileptonic decays of D (and B) mesons, and
to decays of charmonia. We also discuss the impact of LQCD results on the New Physics
searches.

1 Introduction

In the last several years we witnessed a great advancement of LQCD techniques. On one side
the introduction of massively parallelized computing facilities allowed to perform simulations on
very large lattice volumes (e.g. 483 × 96 or 643 × 128 points, corresponding to O(109 ÷ 1010)
degrees of freedom), by splitting computations across thousands of different processors, efficiently
communicating with each other. On the other side the introduction of improved regularizations
of LQCD (such as HISQ, Stout techniques or Domain Wall fermions) allowed to lower the light
dynamical quark mass in the simulations and to formally reproduce the physical pion mass case,
thus overcoming the known limitations of the simulations with the simple Wilson or Staggered
regularizations. Finally, the implementation of modern algorithmic features such as Multiple
time-scale integrators in the Hybrid Monte Carlo, or the Deflation and Domain Decomposition
preconditioning of the linear problem related to solving the Dirac equation on the lattice, in a
globally improved understanding of Monte Carlo simulation behavior as a function of physical
parameters, allowed us to keep the computational cost under control when considering large
volumes simulations at physical pion mass. As a result, several collaborations (such as PACS-
CS, RBC-UKQCD, MILC-Fermilab) have recently presented first results of LQCD simulations in
which the effects of pairs of light quarks corresponding to physical mass u and d quarks are taken
into account in the sea, on large lattices ensuring that the finite volume effects are kept under
the percent level. Having already become used to taking the continuum limit of simulation
results since many years, it goes by itself to say that the three major sources of systematic
uncertainties affecting a typical lattice computation (physical light quark mass, continuum and
infinite volume limit extrapolations) are now well kept under control.

A significant progress has also been made at taking into account the isospin breaking and
electromagnetic effects on the lattice, i.e. without having to rely on effective theories. The
adoption of sophisticated methods to treat heavy quarks on the lattice allowed a better control



of the discretization errors and provided a way to make solid predictions for the heavy quark
physics phenomenology.

In the present talk I report on a selection of results concerning hadronic properties for which,
thanks to all of the aforementioned progress, has been possible to perform the computations in
such a way that all the main systematic uncertainties relative to QCD are kept under control.

2 Charm physics

By comparing the experimentally measured rate of the leptonic decays, Γ
(
D(s) → `ν

)
, and of

the semileptonic ones, Γ (D → π`ν) and Γ
(
D(s) → K`ν

)
, with their theoretical predictions one

can determine the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements |Vcs| and |Vcd|. Using
one of the two estimates for the matrix element |Vcb|incl or |Vcb|excl, one can check the unitarity
of the second row of the CKM matrix in a way similar to what has already been done for the
first row 1,2,3. To this end, a sufficiently accurate estimate of the leptonic decay constants fD(s)

and of the vector form factors fD→π+ (q2), f
D(s)→K
+ (q2) are needed to get a reliable control over

the theoretical uncertainties. During the past several years the improvement of LQCD methods
allowed many LQCD collaborations to carry out a number of unquenched computations of
these quantities, by using various approaches and techniques. Besides one should emphasize an
important progress in studying the radiative decays of charmonia, as that could be used as a
proof of validity of LQCD in studying the non-perturbative properties of QCD related to flavor
physics, independently from the CKM matrix.

2.1 D(s) leptonic decays

The Standard Model expression for the decay width of the process PS → `ν̄`, in which a
pseudoscalar meson PS decays into a lepton-neutrino pair reads:

Γ (PS → `ν̄` (γ)) =
G2
F |VPS |

8π
f2
PSM

2
PSM

2
`

(
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`

M2
PS

)[
1 +

α

π
CPS

]
, (1)

where GF is the Fermi constant, M` and MPS are the lepton and the pseudo-scalar meson
masses, CPS is a coefficient parameterizing the electromagnetic radiative corrections, with α
being the QED coupling. VPS is the CKM matrix element, i.e. the coupling between the up
(U) and down (D) type quark of the Weak current, and fPS is the meson decay constant which
encodes the non-perturbative QCD effects and it is defined via the hadronic matrix element
〈0|Aµ − Vµ |PS〉 = 〈0|Aµ |PS〉 = fPSPµ where Aµ = Ūγµγ5D. The experimental measurement
of the decay width, together with the knowledge of the decay constant fPS allow one to extract
the corresponding CKM matrix element. In Fig. 2.1 (taken from last FLAG II collaboration
report 4, where a full list of references can be found) we show the comparison of the values for
fD and fDs as obtained by various group using various QCD discretization schemes. The overall
agreement of results is very good, so that one can take their average and compare it with the
experimental measurements to get:

|Vcd| = 0.222(10) , |Vcs| = 1.018(24) , [Nf = 2 + 1] (2)

|Vcd| = 0.219(13) , |Vcs| = 1.021(33) , [Nf = 2] (3)

where we separately show the results based on Nf = 2 + 1 or Nf = 2 dynamical quark
simulations.



Figure 13: Decay constants of the D and Ds mesons [values in Table 20 and Eqs. (91), (92)].
The significance of the colours is explained in section 2. The black squares and grey bands
indicate our averages.

As results from just one collaboration exist in the literature, the Nf = 2 averages are
simply given by the values in ETM 11A, which read

Nf = 2 : fD = (212 ± 8) MeV, fDs = (248 ± 6) MeV,
fDs

fD
= 1.17 ± 0.05 . (91)

Several collaborations have produced results with Nf = 2 + 1 dynamical flavours. The
most precise determinations come from a sequence of publications by HPQCD/UKQCD [157,
315, 318]. In all cases configurations generated by MILC with Asqtad rooted staggered
quarks in the sea and a one-loop tadpole improved Symanzik gauge action have been analyzed
(see [15] and references therein). The main differences are in the ensembles utilized and in
the absolute scale setting. The relative scale is always set through r1 derived from the static
quark-antiquark potential.

In HPQCD/UKQCD 07 [157] three lattice spacings, a ≈ 0.15, 0.12 and 0.09 fm, with
RMS pion masses between 542 and 329 MeV, have been considered. This gives rather large
values for the charm-quark mass in lattice units, 0.43 < amc < 0.85, and indeed lattice
artifacts are estimated to be the second largest systematic uncertainty in the computation.
The main systematic error is resulting from the absolute scale setting, which had previously
been performed through the Υ spectrum, using NRQCD for the b quark. The estimate reads
r1 = 0.321(5) fm.

In 2010, HPQCD obtained a more precise determination of r1 = 0.3133(23), based on
several different physical inputs (including fπ, fK and the Υ spectrum) and improved con-
tinuum limit extrapolations. It is worth noting that the new r1 is about 1.5σ lower than the
older value. The publications HPQCD 10A [318] and HPCQD 12A [315] update the compu-
tations of fDs and fD, respectively, using the new scale determination. These results enter
our final averages. The change in the scale requires a retuning of the bare quark masses and
a change in the conversion of dimensionless quantitities, measured in units of r1, to physical
ones, measured in MeV.

91

Figure 1 – Left panel: comparison of the decay constants fD and fDs as obtained by different lattice collaborations.
Right panel: the SU(3) flavor breaking ratio fDs/fD. Plots taken from 4.

2.2 D → π`ν and D(s) → K`ν semileptonic decays

In the Standard Model the theoretical expression for the differential decay rate of the Ds-
meson semileptonic decay into a lighter pseudoscalar meson P and a lepton pair `ν, reads
d
dq2

Γ(D(s) → P`ν) = G2
F |VCKM |2

[K+f+(q2) +K0f0(q2)
]2

, where GF is the Fermi constant,
VCKM is the appropriate CKM matrix element, K+ and K0 are the kinematical factors depend-
ing on the particle masses and their momenta, and f+,(0)(q

2) is the vector (scalar) form factor
parameterizing the hadronic matrix elements. For the experimentally accessible processes in-
volving an electron or a muon in the final state, the coefficient K0 (proportional to m2

` ) is very
small and therefore the scalar form factor contribution to the process is negligible. The D → K
decay form factor f+(q2) can be obtained from studying the three point correlation functions
from which we extract the hadronic matrix element of the vector current between the D and K
mesons, which decomposes as:

〈K|Vµ |D〉 = pµf+(q2) + qµ
m2
D −m2

K

q2

[
f0(q2)− f+(q2)

]
, p = pD + pK , q = pD − pK , (4)

and similarly for the Ds → K and D → π case. In the last several years three lattice collabora-
tions (FNAL/MILC, ETM and HPQCD) approached computed the D → K/π form factors by
using modern sophisticated LQCD techniques, adopting different methods to non-perturbatively
renormalize the matrix element, and performing the continuum and chiral extrapolations. In
Fig. 2 we collect the plots depicting the form factors as functions of q2. HPQCD produced
results for fD→K+,0 (q2) and fD→π0 (q2) covering the full kinematical range, and managed to suc-

cessfully compare the shape of the fD→K+ form factor with that measured in experiments. By
taking advantage of the equality f+(0) = f0(0), they also determined the form factor at q2 = 0
and extracted the CKM matrix elements |Vcs| and |Vcd|. In this way they were able to verify
the unitarity of the second row of the CKM matrix. The same test was repeated by the FLAG
collaboration 4, including the results for matrix elements obtained by other lattice groups. In
that way they were able to estimate the difference from unity of the sum of squares of |Vcd|, |Vcs|
and |Vcb| which they found to be:

|Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = 0.04(6) , (5)

thus compatible with zero. In their preliminary analysis, the ETM collaboration compared the
D → π form factor f+(q2) computed on the lattice with the Vector Meson Dominance (VMD)
model, but in such a way that they also computed the value of the residuum of the form factor
at its first pole on the same set of lattice configuration. They showed that the inclusion of the
first state is not sufficient to saturate the form factor and that the VMD does not work at all.
In the analysis they considered the full set of form factors that enter the theoretical predictions
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normalised for the c�ic and s�is cases by requiring that
Zf+(0) = 1. This is done in a calculation of the ma-
trix element between two identical pseudoscalar mesons
with the same non-zero momentum, achieved by giving
a ‘twist’ to the spectator quark [13]. Fig. 2 shows the re-
sults of doing this on coarse set 2 and fine set 3. We see
that the Z factor is the same, to within few % errors, for
the s and c cases and is independent of the meson used at
source and sink of the 3-point correlator. We have also
checked that results are independent of the momentum
of the spectator quark and the sea quark masses (com-
paring sets 1 and 2). We therefore take the Z factor for
the 1-link spatial c�is current to be that for the c�ic case.
The local temporal vector c�0s current is normalised by
matching to the result for f0(q

2
max) that we obtain from

the absolutely normalised scalar current. This is done
for Ds decay to the ss pseudoscalar denoted ⌘s (an un-
physical state because it is not allowed to decay in lattice
QCD). These Z factors are also shown in Fig. 2.

Both the local scalar and the 1-link vector are ‘taste-
less’ currents in staggered quark parlance and so the 3-
point correlator can be calculated between pseudoscalar
mesons created using the local �5 (Goldstone) operator.
The local temporal vector current has spin-taste �0 ⌦ �0

and so, since tastes must cancel out in a 3-point corre-
lator, it is used in a 3-point function between a charmed
meson created with the local �0�5 operator and a Gold-
stone light meson. Using a di↵erent operator for the D(s)

produces negligible e↵ect here because the mass di↵er-
ence induced by taste-changing e↵ects is very small (less
than 4 MeV on coarse lattices and 1 MeV on fine) 1.

Results. Table II gives our raw results for f+ and f0

for D ! K from combining (spatial) vector and scalar
matrix elements, after renormalising the vector. To de-
termine the functional shape of the form factors we trans-
form to z-space where:

z =

p
t+ � q2 �p

t+ � t0p
t+ � q2 +

p
t+ � t0

, t± = (mD ± mK)2. (7)

This maps the semi-leptonic region, 0 < q2 < t to the
interior of the unit circle, allowing for polynomial fits in
z. We then fit the form factors to

f(q2) =
1

P (q2)�(q2)

NX

n=0

bnzn. (8)

To combine fits for f+ and f0 it is convenient for us to
take t0 = 0 (so that q2 = 0 maps to z = 0) and to take
the simplest form [17] for the product P (q2)�(q2), which

1 Taste-changing e↵ects appear as an O(a2) e↵ect in the square
of the mass for pseudoscalars. Di↵erences in the mass itself are
then suppressed by the mass for charmed mesons [8].
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FIG. 3. Lattice results for f+ and f0 in (upper plot) z-space
and (lower plot) q2-space. Upper plot shows D ! K f+ (plus
signs) and f0 (circles); set 1 (light blue), set 2 (black) and set
3 (dark blue). Our fit (in the a ! 0 and ml ! ml,phys limit)
is shown with solid and dashed lines. The lower plot shows f+

and f0 for D ! K (crosses) and Ds ! ⌘s (circles for 1-link
vector and diamonds for local temporal vector currents). The
results from the z-space fits are plotted with lines - blue for
D ! K and pink for Ds ! ⌘s.

is (1 � q2/M2
X) where MX is the appropriate pole mass,

MD⇤
s

for f+ and MD⇤
s0

for f0.
Fig. 3 shows our results for P�⇥f in z-space, where it

is clear they have a very simple form. To obtain results
in the continuum and physical light quark mass limits,
we allow for dependence of the coe�cients bn in Eq. 8 on
a and valence and sea ml (using chiral parameter �l =
0.25ml/ms,phys from Table I) as:

bn(a, ml) = An{1 + Bna2 + Cna4 + Dn�l

+ En(�l ln[�l] + Fna2�l)} (9)

Priors are taken as: A0: 0.750(75), An, n > 0: 0.0(2.0),
Bn: 0.0(3), Cn: 0.0(1.0), Dn: 0.0(5), En, Fn: 0.0(1.0).
We include coe�cients up to n = 4, with a constraint
on the n = 4 value [17]. Coe�cients are independent
for f0 and f+ except for the kinematic constraint that b0

should be the same for both. From the fits we extract
bn,phys = bn(a = 0, ml = ml,phys).

Our physical curve in z-space is converted back to q2

space giving the lower plot of Fig. 3. We integrate the fac-
tor p3|f+(q2)|2 from Eq. 2 over the experimental bins in

D→ K(π)ℓν and |Vcs(d)| from heavy clover on 2+1 flavor asqtad MILC ensembles Jon A. Bailey

may decrease the errors and eliminate this inflection.
The factors ZV4

cc
and ZV4

xx
are preliminary, and we are updating them. Before the final fits, the

data must be shifted to the retuned κc values. We have generated additional data on one of the
coarse ensembles to correct for the error in κc-tuning and estimate the remaining systematic error
due to uncertainty in the value of the (retuned) κc.

5. Results

Due to suppression by the heavy quark mass, the form factors f D→P
+ are dominated by the

form factors f D→P
⊥ , for which our fits are very well-behaved. By normalizing the form factors to

convenient fiducial points, we compare the shapes obtained from LQCD and experiments; this ap-
proach eliminates the need for any assumption about the normalization of the experimental data.
Below we overlay fiducially normalized χPT curves from our fits (SχPT extrapolated to the phys-
ical light quark mass and continuum limit) and form factor shapes from CLEO and BABAR [5, 4].
The errors on the experimental (blue and violet) data points are from the full covariance matrix,
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Figure 5: Preliminary LQCD results for the shape of f D→π
+ (q2), with statistical errors only, compare fa-

vorably with CLEO-c data, with total errors [5]. On the left the curve is the chiral-continuum extrapolated
shape from SU(3) SχPT; on the right the curve is from SU(2) SχPT. The curves agree within statistics.

including systematics. Even though we omit systematic uncertainties in the lattice results in the
above plots, the qualitative agreement between the curves and experiment is perfectly acceptable
for both SU(3) and SU(2) χPT. Quantitative tests can be performed by fitting the lattice results and
experimental data separately to the z-expansion [13]. Once the quantitative compatibility of the
lattice and experiment form factor shapes is verified, simultaneously fitting the lattice results and
experimental data will yield the CKM matrix elements |Vcs| and |Vcd |.

From the SU(2) (SU(3)) fits above, the statistical errors in f D→π
+ (0) are 4% (4%), and those in

f D→K
+ (0), 2.3% (3%). Important systematic errors are from heavy-quark lattice artifacts, the error

in r1, and the error in the axial coupling gπ . Naively updating the gπ error reduces the projected
systematics to 3.4% [14, 15]. A careful estimate of all systematics reflecting the entire data set
has yet to be made; the difference between our present SU(2) and SU(3) curves is in some cases
comparable to the other errors.

Fermilab is operated under contract DE-AC02-07CH11359 with the U.S. DOE; J.A.B. is
supported by the Creative Research Initiatives Program (2012-0000241) of the NRF grant funded
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Figure 2 – Comparison of three different determinations of the D → K and D → π form factors. Left panel:
results of HPQCD collaboration for fD→K

+,0 (a2). Center panel: preliminary results presented by Fermilab/MILC
collaboration at Lattice 2012 conference6 for D → π vector form factor f+(q2). Right panel: author’s preliminary
results presented at Lattice 2013 conference 7.

of D(s) → K/π`ν in the most generic extension of the Standard Model, that required the
computation of the form factor fT , in addition to the already mentioned f+ and f0, extracting
it from the matrix element of tensor current between D and π states, namely:

〈P (p′)|qσµνc|D(p)〉 = −i(pµp′ν − p′µpν)
2fT (q2, µ)

mD +mP
. (6)

Using the accurate experimental values for the decay widths, together with the established
values of VCKM , one can use the three form factors computed in LQCD to set bounds on
the coupling to additional operator (apart from the Standard Model one, namely ŪγLµD) thus
constraining the effects of New Physics Beyond the Standard Model. Similarly, one can use
leptonic and semileptonic decays to test the models predicting the existence of a heavy (sterile)
neutrino (c.f. 5).

In the future the increase in precision of the computation of the D(s) semileptonic form
factors will allow to increase the accuracy of the determination of the CKM matrix elements,
and improve the bounds on physics beyond the SM. The expertise acquired in studying D meson
form factors set the grounds for more challenging determination of the B meson properties.

2.3 Radiative decays of charmonia

The radiative decays of charmonia offer a possibility of performing valuable tests. One can either
test the LQCD approach to high accuracy or test the SM independently from the CKM matrix.
The decay J/ψ → ηcγ has been a subject of extensive theoretical and experimental studies since
several decades. The current experimental value quoted by PDG 8 is,

Γ(J/ψ → ηcγ) = 1.58(37) keV. (7)

It has been obtained after averaging two experimental results, namely Γ(J/ψ → ηcγ) =
1.18(33) keV by Crystal Ball 9, and the more recent one obtained by CLEOc, 1.91(28)(3) keV 10.
The currently running KEDR experiment 11, instead, suggests a larger value, 2.2(6) keV. It is
fair to say that the current experimental situation is unclear and a dedicated charm physics
experiment at BESIII is expected to clarify the situation in the future.

Prior to 2012 the theoretical situation concerning prediction of Γ(J/ψ → ηcγ) was not
better. The predictions obtained by means of various approaches (Dispersive analysis 12, QCD
sum rules 13,14, effective theory of non-relativistic QCD 15, and potential quark models 16,17) as
well as LQCD performed in quenched approximation 18 or at single lattice spacing 19 presented
a globally confusing picture, nevertheless pointing to values comparable with those measured by
the latest experiments (see Fig. 2.3).



Figure 3 – Comparison of various experimental results(left panel), theoretical predictions based on analytical
approaches (central panel) and lattice numerical calculation for the J → ψγ decay rate. The horizontal grey band
is PDG average of the two leftermost experiments.

In 2012 two different lattice groups 20,21 computed the decay width of this process by taking
into account for the first time the effects of light sea quark loops (more specifically, up and
down quarks in the case of ref. 20, and also the strange quark in 21), and by performing the
extrapolation to both the chiral and continuum limits. By relying on the so-called Twisted
Boundary condition 22 the two computations provided the form factor value relevant to the
physical photon case, i.e. q2 = 0, thereby avoiding the extrapolations from large, unphysical
momenta, to q2 = 0. The two analyses were based on two very different lattice regularizations:
the Twisted Mass (Wilson-like) at maximal twist in the case of ref. 20, resulting in Γ(J/ψ →
ηcγ) = 2.64(11) keV, and the Highly Improved Staggered Quark (Rooted Staggered-like) in the
case of ref. 21, with the result 2.49(19) keV. A strikingly good agreement between the two so
precise determinations based on two very different approaches stresses the power reached by
the LQCD method. The theory prediction for this decay width is therefore clarified and a call
for an improved experimental determination is in order. If the experimental precision could
be increased, the J/ψ → ηcγ mode could become a precision test of nonperturbative QCD.
Otherwise, the results obtained for charmonium can be used for an equally interesting study,
namely to test the presence of a light CP-odd Higgs state that is predicted in various two-
higgs doublet models (2HDM). Furthermore, a study of the Υ(2S)→ ηbγ process could help us
to improve the determination of ηb mass which would in turn improve the comparison of the
measured and predicted hyperfine splitting ∆ = mΥ(1S)−mηb . In this way one could also check
for the presence of a CP-odd Higgs state in bottomium systems as well.

3 B physics

The physics of the b quark offers a rich set of processes to test of the Standard Model and search
for the effects of physics beyond. For example, the value of the two entries |Vub| and |Vcb| of
CKM matrix as extracted by means of different phenomenological inputs (inclusive and exclu-
sive B decays) are in disagreement among themselves. On the other side, a comparison of the
recently measured Br(Bs → µ+µ−) with theory offers the possibility to check for the presence
of New Physics. Lastly, the B → K(∗)`+`− decays raised a great interest recently due to signif-
icant tension between the experimental measurements and theory predictions. For all of these
processes LQCD is crucial for providing the reliable method to compute the hadronic matrix
elements entering the theory prediction. Motivated by the importance of the phenomenological
implications, the lattice community dedicated great effort to the b-physics. The major issue
for a lattice computation of b-hadronic matrix elements is that of treating the large range of
energies between the hadronic scale [O(ΛQCD)] and the meson masses containing a b quark(s)
[O5 ÷ 10 GeV]. To accommodate in the same box with finite volume and finite lattice spacing
box these two scales, one would need considering huge lattices, of 102 ÷ 103 points, which are



clearly beyond the reach of currently available computing resources. Nonetheless thanks to a
number of innovative approaches (improved regularizations, using judicious ratios to suppress
the cut-off effects, and make use of different effective field theory approaches to separate the
scales involved in the problem) made it possible to make reliable predictions accessible with
currently available computer facilities and algorithms.

3.1 B(s) leptonic decay

The B and Bs leptonic decay constants fB and fBs are of central importance in flavor physics,
for different reasons. The value of the first, in conjunction with the experimental measurement
of B(B → τν) allows us to extract the value of |Vub|, CKM matrix element the value of which is
by itself longly debated: when determined through the inclusive B → Xu`ν decay it amounts 23

to |Vub| = 4.40(15)(20) × 10−3, while exclusive B → π`ν decay at Belle and BaBar resulted
in 3.47(22) × 10−3, and 3.37(21) × 10−3, respectively. An independent determination of |Vub|
from the leptonic decay would help solving the tension. Since the lattice spacings adopted
in typical lattice simulations are still not larger than the inverse b quark mass, a special care
must be devoted to discretization effects. Various lattice collaborations have applied different
strategies: FNAL-MILC adopted the Fermilab method based on a non-relativistic interpretation
of the cut-off effects; HPQCD employed the Non Relativistic QCD and more recently the HISQ
regularization to extrapolate from masses very close to the physical b-quark mass; the Alpha
collaboration instead used Heavy Quark Effective Theory, together with the step scaling to
separate the light and heavy scales; finally, ETM defined ratios of decay constants at heavy
quark masses that differ by a known exact factor. The benefit of that approach is that the
value of those ratios in the static limit is fixed by the heavy quark symmetry. The results of
these studies are reported in the left panel of Fig. 3.1, where a good level of precision and a
remarkably good agreement among different determinations has been reached. Unfortunately,
the limited experimental precision by Belle and BaBar does not allow for a reliable extraction of
|Vub|. As of now, by using the Belle measurement for B(B → τν) one obtains |Vub| = 3.8(5)(2),
while by using the BaBar experimental input one gets |Vub| = 5.2(7)(2). A better precision on
the experimental side is therefore mandatory to solve the above-mentioned problem.

Although the Bs cannot decay leptonically (in the Standard Model), the value of its leptonic
decay constant is of major importance for the prediction of the penguin/box induced decay
Bs → µ+µ−. In the right panel of Fig. 3.1 we show a comparison of the results obtained from
the same lattice analyses discussed above in the case of fB. A very good agreement among
various determinations is found. The great precision reached by them individually shows the
robustness of the employed methods, and stresses the progress made in the past several years
in the computation this quantity on the lattice. The error in the determination of fBs will soon
approach the level at which the inclusion of electromagnetic corrections, beyond the factorization
approximation, will be necessary in order to match the increasing precision of the experimentally
measured Bs → µ+µ− decay rate (see talk by M. Gorbahn at this conference).

3.2 B(s) → D
(∗)
(s)`ν decays

A popular test of the Standard Model is based on verification of the agreement between theoret-
ical predictions and experimental measurements of ratios of branching fractions of semileptonic

B(s) → D
(∗)
(s)`ν decays differing by the lepton flavor, considering the quantity:

R(D) =
B(B → Dτντ )

B(B → D`ν)
, R(D∗) =

B(B → D∗τντ )

B(B → D∗`ν)
(` = e, µ) . (8)

In the ratio many of the experimental and theoretical uncertainties (in particular, B → D
form factor normalization and CKM matrix elements) cancel out. In 2012 the BaBar collabo-
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Figure 18: A comparison of the available continuum extrapolated determinations of fBs panel (a), fB panel
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indicated as HPQCD’12 in panel (b), have both been obtained using Nf = 2 + 1 (MILC) gauge ensembles but
employ different valence quark regularisations.)
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Figure 4 – Comparison of the result for the B and Bs decay constants as obtained by various lattice collaborations.
Plot taken from 24.

ration reported a deviation of their measurement of R(D) w.r.t the Standard Model prediction,
in particular:

R(D)BaBar = 0.440± 0.071, R(D)SM = 0.31± 0.02 (9)

It has been suggested that the observed discrepancy could be attributed to a presence of
Physics Beyond the Standard Model. To put this suggestion on a more solid basis, an accu-
rate theoretical calculation of the B → D form factor by means of modern LQCD methods, is
required. In particular the experiments fit their data to the shape of the form factors parame-
terized according to the expressions proposed and derived in ref.25, reporting the combination of
|Vcb · G(1)|, where G(1) is the relevant form factor extracted at zero recoil, w = 1 corresponds to
q2
max = (mB −mD)2 as the two are related via q2 = m2

B +m2
D − 2mBmDw. So far a few LQCD

calculations have been dedicated to the computation of the form factor G needed to normalize
the experimental result and determine Vcb. Recently, the authors of ref. 26 studied the case of
the slightly simpler Bs → Ds process, in view of exploring the more demanding and interesting
case of B → D case.

This determination relies on the fact that the elastic Ds → Ds form factor G(1,mc,mc) is
equal to 1, thanks to conservation of the electric charge. Also in the limit limmh→∞ the form
factor G(1,mh,mc) is known to be 1 up to radiative and 1/mh

27. These two bounds constrain
the form factor behavior as a function of the heavy quark mass, and therefore studying the form
factor G(1,mh) for various values of the heavy quark mass mh between the charm and bottom
quark masses, it becomes possible to extrapolate the lattice data computed for the b quark mass
lower than the physical one. Computing the form factor G at two different values of the heavy
quark mass mh and λ ·mh, one can build the ratio:

σ =
G(1, λmh,mc)

G(1,mh,mc)
, (10)

so that starting with mh = mc one can reconstruct G(1,mb,mc) from the chain equation:

G(1,mb,mc) = σnσn−1...σ1σ0 G(1,mc,mc)︸ ︷︷ ︸
1

, (11)

being σ(i) = G(1,λi+1mc,mc)
G(1,λimb,mc)

, λ =
(
mb
mc

)1/n
. The value of σi close to the physical b quark mass,

where lattice data is not accurate and affected by significant cut-off effects can be reconstructed
by fitting the value of σi close to the physical charm, constrained by the fact that σ is 1 in the
static limit by construction, as depicted in Fig. 5. The advantage of studying ratios of quantities
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Figure 5 – Reconstruction of σ(mh) (defined in the text) using lattice data close to the charm quark. The two
set of points show the result of two different possible extrapolation to the continuum limit (plot taken from 26).

at different values of the heavy quark mass comes from the large cancellation of statistical and
systematic errors between numerator and denominator, and has been suggested for the fist time
in ref. 28.

The final result is therefore obtained by applying eq. 11, using the fitted form of σ(mh) to
evaluate σi, leading to: G(1) = 1.052(46). This number can be compared with the one obtained
in ref. 29 for the case of B → D, namely 1.026(17) in which the step scaling function has been
used to separate the high and low energy scales involved in the process, but in the quenched
approximation. The result is also comparable with the one obtained in ref. 30, G(1) = 1.074(24),
an unquenched computation, at a single lattice spacing. In the future, increase in statistics
will help providing more accurate results for such form factors and settle the issue of R(D) on
a more quantitative basis. Note also that in ref. 26 the authors reported on the first lattice
computation of the scalar and tensor form factors for the B(s) → D(s)`ν decays, which are
essential for a study of the current discrepancy between theory and experiment for R(D) and in
view of various extensions of the Standard Model.

This method has not been employed in computing the hadronic form factor entering the
theoretical description of the B → D∗`eν decay. A key quantity for that decay (equivalent to
G(1) discussed above) is the form factor F(1). Very recently that quantity has been computed
to an impressive accuracy in ref. 31 by using the Fermilab approach to the heavy quark and with
the staggered light quarks, F(1) = 0.906(4)(12).

3.3 B → K(∗)`+`− decays

The B → K(∗)`+`− decay has been subject to theoretical debate in reference to a tension mani-
fested in the global fit of b→ s transition (see talk by S.Descotes-Génon and W.Altmannshofer
at this conference). The form factors relevant to these processes have been only recently com-
puted in an unquenched (Nf 6= 0) environment. The HPQCD collaboration has reported 32 the
results of their computation of the B → K form factors f+,0,T by means of Non-Relativistic
QCD (NRQCD), and for a range of q2’s close to the maximal q2

max = m2
B − m2

D, and then
extrapolating to low q2’s as shown in fig. 6. In this new study the values for f0,T (q2) results
consistent with the previous one 33, but f+(q2) results is found to be smaller. It is interesting
to note that 34 the new f+(m2

J/ψ)/f0(m2
ηc) suggests a sizable violation of the factorization ap-

proximation in Br(B → ηcK)/Br(B → J/ψK). Notice also that FNAL/MILC collaboration
presented their preliminary results for the form factors in ref. 35. The authors of ref. 36, instead,
studied the cases of B → K∗`+`− and Bs → φ`+`− decays, where seven different form factors
contribute. Again they used NRQCD and considered transferred momenta close to q2

max.
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Figure 6 – Calculation of the form factors relevant for the B → K`+`− decay performed by HPQCD collaboration
32. Colored bands are the results of fit to the lattice data computed on the range of q2 covered by the grey area.

4 Conclusions

In this talk we showed in what way the recent progress in LQCD can help the Standard Model
phenomenology and provide a way to look for the effects of physics beyond the Standard Model
through a comparison between the experimental data and the theoretical estimates of a large
number of flavor physics processes. The improvement of computing power and of the used algo-
rithms, allow to eliminate the major sources of systematic errors affecting LQCD computations.
The ongoing progress is allowing to consider heavy quark ever closer to the physical b-quark
mass. Thanks to many theoretical developments the effects of electromagnetism and mass dif-
ference between u and d quark masses are starting to being accounted directly from the first
principle of the theory 37,38, allowing in the future to perform even more precise tests of the
Standard Model. LQCD is nowadays able to provide reliable results for a number of matrix
elements, mainly those needed for semileptonic and leptonic decays. LQCD helped checking
the unitarity of the 1st row of the CKM matrix and today is narrowing the precision of the
test of the 2nd row. Beside these decays, vital for the flavor physics phenomenology, a steady
progress in understanding the QCD dynamics of non-leptonic decays has been made as well. A
particularly interesting results in the direction of solving the ∆I = 1/2 rule, has been presented
in ref. 39,40.
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