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In this case it is possible to describe experiments at the electroweak 
scale using an effective field theory framework:

Leading deformations of the SM

59 independent dim-6 operators for 1 family of fermions.

We assume

Grzadkowski et al. 1008.4884
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(see talk by A. Pomarol)
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We assume L and B conservation
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≲10-3 ≲10-2

g1Z , kγ , λγ cγγ cγZ cHS, T, W, Y

≲0.5≲10-3 ≲10-2

In our basis these are the relevant 10 operators:

We focus on the following 10 (pseudo-)observables:
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We “rotate" the Wilson coefficients to the observable basis.
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Λ  —

mh —

Renormalization Group 
scaling

The coefficient mix among themselves along this RG flow.

UV dynamics

Experiments

Energy scale

David Marzocca

—> what we measure

—> what we would like to knowci (Λ)

ci (mh)



why we have not taken care of the contributions of the dim-6 operators on the SM couplings,

parametrized by i in Eq. (4.1), which would only be necessary if we wanted to relate !ij(mh)

to !ij(⇤) at the order we are working.

This discussion leads us to define the scale-dependent observable couplings as

ĉi(µ) ⌘ !ij(mh)cj(µ) , (4.4)

obtaining
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�1

lj (mh) (4.6)

and �kl is the matrix computed in the previous section. Our interest in Eq. (4.5) is twofold:

we want to find instances where a less constrained operator can mix with a more constrained

one by appearing in its RGE’s and, secondly, (but closely related) to learn about the new

degrees of freedom at the matching scale. In the following we shall work at leading-log order,

which is fine if the hierarchy between the new physics scale ⇤ and the EW scale is not too

big.

The fundamental assumption we make in order to obtain an indirect constrain on the

ĉj(mh) through the RG is that we require each term in the sum on the r.h.s. of Eq. (4.5),

proportional to some coe�cient ĉj, to be contained in the experimental bounds associated to

the observable �(obs)i|mh
:
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where we defined �i = �̂ii/(16⇡2) log(⇤/mh) and in the last line the index |̂ is not summed

over.8 We have also used the fact that substituting ĉj(⇤) for ĉj(mh) in the �̂ij ĉj term of

Eq. (4.5) amounts to corrections O �
(4⇡)�4 log2(⇤/mh)

�
that are beyond our precision (the

same is true for the evaluation of �ij). Notice that this assumption is not only a requirement of

the absence of fine-tuning but also an hypothesis on the UV physics, since particular relations,

due to symmetry or dynamical accidents, between those combinations could be generically

found when considering a BSM theory. From our bottom-up approach we will parametrize

also this absence of correlations as an absence of tuning. From Eq. (4.7) we can put bounds

on the matching-scale Wilson coe�cients cj(⇤):

cj(⇤) 2 !�1

ji (1� �i)
�1[✏lowi , ✏upi ] , (4.9)

notice that, as expected, they grow quadratically weaker with the increase of the UV scale

⇤ since !�1 ⇠ ⇤2/m2

W . Using Eq. (4.8), instead, we can put an RG-induced bound on the

8In the following we shall denote with a hat all repeated indices which are not summed over.
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Direct bound!
(from experiment)

We computed the relevant anomalous dimension matrix

In absence of tuning or correlations 
each term should be bounded 
approximately by the same value.

RG!
scaling A well known example: Barbieri et al. 0706.0432
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RG-induced bounds

The length of the lines corresponds 
to the present 2σ direct bounds.

ci > 0!
ci < 0
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2σBound from Gfitter 
1209.2716

Λ = 2 TeV
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RG-induced!
bound on cH
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To know more, also regarding 3 operators with gluons, have a look at:

ci > 0!
ci < 0

ci > 0!
ci < 0

c!ΓZ

c!H
#2 #1 0 1 2

#1

0

1

2

 103 S
!

 1
03
T!

c!gZ
c!ΛΓ

c!kΓ

$2 $1 0 1 2

$1

0

1

2

 103 S
!

 1
03
T!

2σ 2σ
Λ = 2 TeVΛ = 2 TeV

Generalizing to the other observables we considered:

S,T by TLEP!
(rough estimate)
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http://arxiv.org/abs/1312.2928
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to parametrize BSM corrections to the SM Lagrangian. With a suitable set of 10 independent

measurements we can thus constrain all these operators. We choose the ten most precisely

measured observables to form our observable basis. Following the strategy of refs. [12, 18],

these include four precision observables from LEP1 and LEP2 (parametrized by the Ŝ, T̂ , Y

and W parameters), the three triple gauge coupling (TGC) observables and three observables

related to Higgs physics [18]. To derive the RG-induced constraints on these observables we

first need to relate them to the operators in Eq. (4.13), that is define the transformation

matrix, !ij, from the basis in Eq. (4.13) and to the observable basis.

We begin with the electroweak precision observables constrained by measurements at

LEP1, LEP2 and Tevatron. The first step of the analysis is to fix the SM parameters g, g0

and v by the three most precise measurements: the Fermi constant GF in muon decays, the

fine-structure constant ↵em and the Z-boson mass mZ . With the input parameters fixed, the

SM gives predictions for observables such as Z-pole measurements at LEP 1, the Tevatron

measurement of the W -mass and LEP 2 measurements of the e+e� ! f+f� cross-sections.

New physics can a↵ect this analysis by either changing the relationship between the input

parameters g, g0 and v to the measurement of GF , ↵em and mZ or by directly contributing to

the other measurements. All the deviation in the above observables induced by the operators

we consider, Eq. (4.13), can be parametrized by the Ŝ, T̂ , W and Y parameters [23]
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2. (4.14)

The contribution of the Wilson coe�cients of the operator set in Eq. (4.13) to the above

observables is given by,

T̂ = ĉT (mW ) =
v2

⇤2

cT (mW ) , Ŝ = ĉS(mW ) =
m2

W

⇤2

[cW (mW ) + cB(mW ) + 4cWB(mW )] ,
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m2

W

⇤2

c
2B(mW ) , W = ĉW (mW ) =

m2

W

⇤2

c
2W (mW ) . (4.15)

The above parameters have been measured very precisely and are constrained at the per mille

level. We present the 95 % CL bounds on these parameters in Table 3. 9

9Notice, however, that the measurement of the Ŝ, T̂ , W and Y -parameters is done through an e+e� !
f+f� experiment, and hence two other operators of the dim-6 operators basis, defined in Section 2, should

enter in this analysis [12,18],

OL = (iH†$DµH)(L̄L�µLL) , O1,2
LL = (L̄1

L�a�µL1
L)(L̄

2
L�a�µL2

L) ,

where the former a↵ects the SM coupling of the Z boson to the left-handed leptons, and the latter a↵ects

the measurement of GF (recall that the super-indices denote the fermion family). There is no obstacle to

including them, as there are enough measurements to simultaneously constrain all six operators at the per

mille level [28]. However, since the purpose of this section is not to provide the best global bounds and

since their size is under control, we shall neglect them in the following. As these two operators are highly

constrained, RG contributions of operators in Eq. (4.13) to {OL,O1,2
LL} would allow us to impose RG-induced

bounds on the former; such contributions, however, vanish if we ignore the light Yukawas (see Appendix A.2).

The RG contributions of {OL,O1,2
LL} to the other operators can be found in ref. [12].
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Y = ĉY (mW ) =
m2

W

⇤2

c
2B(mW ) , W = ĉW (mW ) =
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A second set of independent measurements that constrain the operator set in Eq. (4.13) are

the TGC that were measured in the e+e� ! W+W� process at LEP2. The phenomenological

Lagrangian to describe deviations in the TGC observables, from their SM values, is,

�L
3V = ig gZ

1
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⇣
W+⌫Ŵ�

µ⌫ �W�⌫Ŵ+
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⌘
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µ W�
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W

⇣
�Zc✓W Ẑµ⌫ + ��s✓W Âµ⌫

⌘
Ŵ�⇢

µ Ŵ+

⇢⌫ , (4.16)

where V̂µ⌫ = @µV⌫ � @⌫Vµ, the photon field Aµ = c✓WBµ + s✓WW 3

µ has field-strength Âµ⌫ ,

while Zµ = c✓WW 3

µ � s✓WBµ has field-strength Ẑµ⌫ and we use s✓W ⌘ sin ✓W = g0/
p

g2 + g02,
c✓W ⌘ cos ✓W = g/

p
g2 + g02 and e = gs✓W . Note that the above Lagrangian has only three

independent parameters at the dim-6 level taken to be gZ
1

,� and �� here; the other two

can be expressed as : �Z = �� and Z = gZ
1

� t2✓W�. These relations are a consequence of

the accidental custodial symmetry that is preserved by the dim-6 operators entering in the

TGC [29]. The SM contribution is given by (gZ
1

)SM = (�)SM = 1 and (�Z)SM = 0. The

corrections induced by the dim-6 operators in our basis are given by:

�gZ
1

⌘ ĉgZ(mW ) = �m2

W

⇤2
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W

⇤2

4cWB(mW ) ,
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W
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c
3W (mW ) ,

(4.17)

where �gZ
1

= gZ
1

� (gZ
1

)SM and �� = � � (�)SM . The constraints on these TGC observables

are at the percent level (see Table 3) and thus at least an order of magnitude weaker than

the constraints on the electroweak parameters in Eq. (4.15). Note that, for this reason, in

Eq. (4.17) we have ignored contributions to the e+e� ! W+W� process from the couplings

in Eq. (4.14).

Higgs physics provides the three remaining observables for our observable basis. We

consider the branching ratios h ! ��/Z� and the correction to the Higgs kinetic term,

�LHiggs � ĉH
2

(@µh)2

2
+

ĉ��e2
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2
Âµ⌫Â

µ⌫ +
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2
Âµ⌫Ẑ

µ⌫ . (4.18)

The above coe�cients, in terms of the dim-6 operator’s Wilson coe�cients are given by

ĉH(mh) =
v2

⇤2

cH(mh),

ĉ��(mh) =
m2

W

⇤2
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�
.

(4.19)

We present the constraints on these three observables in Table 3. The coupling ĉ�� is con-

strained at the per mille level although the constraint on the SM diphoton width has been
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where V̂µ⌫ = @µV⌫ � @⌫Vµ, the photon field Aµ = c✓WBµ + s✓WW 3

µ has field-strength Âµ⌫ ,

while Zµ = c✓WW 3

µ � s✓WBµ has field-strength Ẑµ⌫ and we use s✓W ⌘ sin ✓W = g0/
p
g2 + g02,

c✓W ⌘ cos ✓W = g/
p
g2 + g02 and e = gs✓W . Note that the above Lagrangian has only three

independent parameters at the dim-6 level taken to be gZ
1

,� and �� here; the other two

can be expressed as : �Z = �� and Z = gZ
1

� t2✓W�. These relations are a consequence of

the accidental custodial symmetry that is preserved by the dim-6 operators entering in the

TGC [29]. The SM contribution is given by (gZ
1

)SM = (�)SM = 1 and (�Z)SM = 0. The

corrections induced by the dim-6 operators in our basis are given by:

�gZ
1

⌘ ĉgZ(mW ) = �m2

W

⇤2

1

c2✓W
cW (mW ) , �� ⌘ ĉ�(mW ) =

m2

W

⇤2

4cWB(mW ) ,

�Z ⌘ ĉ��(mW ) = �m2

W

⇤2

c
3W (mW ) ,

(4.17)

where �gZ
1

= gZ
1

� (gZ
1

)SM and �� = � � (�)SM . The constraints on these TGC observables

are at the percent level (see Table 3) and thus at least an order of magnitude weaker than

the constraints on the electroweak parameters in Eq. (4.15). Note that, for this reason, in

Eq. (4.17) we have ignored contributions to the e+e� ! W+W� process from the couplings

in Eq. (4.14).

Higgs physics provides the three remaining observables for our observable basis. We

consider the branching ratios h ! ��/Z� and the correction to the Higgs kinetic term,

�LHiggs � ĉH
2

(@µh)2

2
+

ĉ��e2

m2

W

h2

2
Âµ⌫Â

µ⌫ +
ĉ�Z eg

m2

W c✓W

h2

2
Âµ⌫Ẑ

µ⌫ . (4.18)

The above coe�cients, in terms of the dim-6 operator’s Wilson coe�cients are given by

ĉH(mh) =
v2

⇤2

cH(mh),

ĉ��(mh) =
m2

W

⇤2

(cBB(mh) + cWW (mh)� cWB(mh)) ,

ĉ�Z(mh) =
m2

W

⇤2

�
2c2✓W cWW (mh)� 2s2✓W cBB(mh)� (c2✓W � s2✓W )cWB(mh)

�
.

(4.19)

We present the constraints on these three observables in Table 3. The coupling ĉ�� is con-

strained at the per mille level although the constraint on the SM diphoton width has been
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A second set of independent measurements that constrain the operator set in Eq. (4.13) are

the TGC that were measured in the e+e� ! W+W� process at LEP2. The phenomenological

Lagrangian to describe deviations in the TGC observables, from their SM values, is,

�L
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where V̂µ⌫ = @µV⌫ � @⌫Vµ, the photon field Aµ = c✓WBµ + s✓WW 3

µ has field-strength Âµ⌫ ,

while Zµ = c✓WW 3

µ � s✓WBµ has field-strength Ẑµ⌫ and we use s✓W ⌘ sin ✓W = g0/
p
g2 + g02,

c✓W ⌘ cos ✓W = g/
p
g2 + g02 and e = gs✓W . Note that the above Lagrangian has only three

independent parameters at the dim-6 level taken to be gZ
1

,� and �� here; the other two

can be expressed as : �Z = �� and Z = gZ
1

� t2✓W�. These relations are a consequence of

the accidental custodial symmetry that is preserved by the dim-6 operators entering in the

TGC [29]. The SM contribution is given by (gZ
1

)SM = (�)SM = 1 and (�Z)SM = 0. The

corrections induced by the dim-6 operators in our basis are given by:

�gZ
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where �gZ
1

= gZ
1

� (gZ
1

)SM and �� = � � (�)SM . The constraints on these TGC observables

are at the percent level (see Table 3) and thus at least an order of magnitude weaker than

the constraints on the electroweak parameters in Eq. (4.15). Note that, for this reason, in

Eq. (4.17) we have ignored contributions to the e+e� ! W+W� process from the couplings

in Eq. (4.14).

Higgs physics provides the three remaining observables for our observable basis. We

consider the branching ratios h ! ��/Z� and the correction to the Higgs kinetic term,

�LHiggs � ĉH
2
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2
+
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The above coe�cients, in terms of the dim-6 operator’s Wilson coe�cients are given by
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(4.19)

We present the constraints on these three observables in Table 3. The coupling ĉ�� is con-

strained at the per mille level although the constraint on the SM diphoton width has been
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To be completely general on the possible NP scenarios in electroweak precision 
observables from LEP1 and LEP2, in our basis one should consider two more 
operators:

David Marzocca

to parametrize BSM corrections to the SM Lagrangian. With a suitable set of 10 independent

measurements we can thus constrain all these operators. We choose the ten most precisely

measured observables to form our observable basis. Following the strategy of refs. [12, 18],

these include four precision observables from LEP1 and LEP2 (parametrized by the Ŝ, T̂ , Y

and W parameters), the three triple gauge coupling (TGC) observables and three observables

related to Higgs physics [18]. To derive the RG-induced constraints on these observables we

first need to relate them to the operators in Eq. (4.13), that is define the transformation

matrix, !ij, from the basis in Eq. (4.13) and to the observable basis.

We begin with the electroweak precision observables constrained by measurements at

LEP1, LEP2 and Tevatron. The first step of the analysis is to fix the SM parameters g, g0

and v by the three most precise measurements: the Fermi constant GF in muon decays, the

fine-structure constant ↵em and the Z-boson mass mZ . With the input parameters fixed, the

SM gives predictions for observables such as Z-pole measurements at LEP 1, the Tevatron

measurement of the W -mass and LEP 2 measurements of the e+e� ! f+f� cross-sections.

New physics can a↵ect this analysis by either changing the relationship between the input

parameters g, g0 and v to the measurement of GF , ↵em and mZ or by directly contributing to

the other measurements. All the deviation in the above observables induced by the operators

we consider, Eq. (4.13), can be parametrized by the Ŝ, T̂ , W and Y parameters [23]

�L
EWPT

=
T̂

2

m2

Z

2
ZµZ

µ � Ŝ

4m2

W

v2

2
(W 3

µ⌫B
µ⌫)� W

2m2

W

(@µW 3

µ⌫)
2 � Y

2m2

W

(@µBµ⌫)
2. (4.14)

The contribution of the Wilson coe�cients of the operator set in Eq. (4.13) to the above

observables is given by,

T̂ = ĉT (mW ) =
v2

⇤2

cT (mW ) , Ŝ = ĉS(mW ) =
m2

W

⇤2

[cW (mW ) + cB(mW ) + 4cWB(mW )] ,

Y = ĉY (mW ) =
m2

W

⇤2

c
2B(mW ) , W = ĉW (mW ) =

m2

W

⇤2

c
2W (mW ) . (4.15)

The above parameters have been measured very precisely and are constrained at the per mille

level. We present the 95 % CL bounds on these parameters in Table 3. 9

9Notice, however, that the measurement of the Ŝ, T̂ , W and Y -parameters is done through an e+e� !
f+f� experiment, and hence two other operators of the dim-6 operators basis, defined in Section 2, should

enter in this analysis [12,18],

OL = (iH†$DµH)(L̄L�µLL) , O1,2
LL = (L̄1

L�a�µL1
L)(L̄

2
L�a�µL2

L) ,

where the former a↵ects the SM coupling of the Z boson to the left-handed leptons, and the latter a↵ects

the measurement of GF (recall that the super-indices denote the fermion family). There is no obstacle to

including them, as there are enough measurements to simultaneously constrain all six operators at the per

mille level [28]. However, since the purpose of this section is not to provide the best global bounds and

since their size is under control, we shall neglect them in the following. As these two operators are highly

constrained, RG contributions of operators in Eq. (4.13) to {OL,O1,2
LL} would allow us to impose RG-induced

bounds on the former; such contributions, however, vanish if we ignore the light Yukawas (see Appendix A.2).

The RG contributions of {OL,O1,2
LL} to the other operators can be found in ref. [12].

13

The first one contributes to lepton couplings to the Z boson,!
the second one to the measurement of the Fermi constant.

Using observables from LEP1 (Z pole) and LEP2 it is possible to constrain the 
relevant 6 Wilson coefficients at the per mil level.!
This would require a complete fit of LEP observables, which was beyond the 
purpose of our work.!
!
The order of magnitude of our RG-induced bound will not change.
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Coupling Direct Constraint

RG-induced

Constraint

ĉS(mt) [�1, 2]⇥ 10�3 [30] -

ĉT (mt) [�1, 2]⇥ 10�3 [30] -

ĉY (mt) [�3, 3]⇥ 10�3 [23] -

ĉW (mt) [�2, 2]⇥ 10�3 [23] -

ĉ��(mt) [�1, 2]⇥ 10�3 [18] -

ĉ�Z(mt) [�0.6, 1]⇥ 10�2 [18] [�2, 6]⇥ 10�2

ĉ�(mt) [�10, 7]⇥ 10�2 [28] [�5, 2]⇥ 10�2

ĉgZ(mt) [�4, 2]⇥ 10�2 [28] [�3, 1]⇥ 10�2

ĉ��(mt) [�6, 2]⇥ 10�2 [28] [�2, 8]⇥ 10�2

ĉH(mt) [�6, 5]⇥ 10�1 [31] [�2, 0.5]⇥ 10�1

Table 3: In this table we present the 95 % CL, direct constraints on the coe�cients in the observ-

able basis (second column). The constraints on Ŝ and T̂ presented here the ones obtained after

marginalizing on the other parameters in the fit of Ref. [30]. In the analysis we use the Ŝ, T̂ -ellipse

from Ref. [30] with U = 0. Simultaneous constraints on all three of the TGC observables do not

exist in the literature, so we have provided the individual constraints on the three couplings without

taking into account correlations between them [28]. In the third column we show the RG-induced

constraint we are able to obtain under the assumption of no fine-tuning in Eq. (4.22).

measured only with O(1) precision. This is because the SM width is already one-loop sup-

pressed and thus the current O(1) precision of measurement corresponds to ĉ�� ⇡ 10�3. The

correction to the Higgs kinetic term ĉH on the other hand is poorly constrained. This is

because ĉH causes a universal shift in all the Higgs couplings and thus drops out from the

branching ratios. Moreover, if only gluon fusion production channels are considered, the cou-

pling cGG mimics the e↵ect of ĉH . Therefore, to disentangle the e↵ect of cGG and constrain

ĉH , Higgs production cross-sections in di↵erent channels have to be compared; in particular

the weakly sensitive vector-boson fusion (VBF) channels have to be considered.

Based on their precision of measurement, the observables can be divided into at least

two groups. In the first group, containing highly constrained operators, we have the four

electroweak parameters and the Higgs diphoton coupling (see Table 3),

{ĉS, ĉT , ĉW , ĉY , ĉ��} , (4.20)

which have been measured at the per mille level. In the second group we have the h�Z

coupling, the couplings related to the three TGC observables �, g1Z ,�� and ĉH ,

{ĉ�Z , ĉ�, ĉgz, ĉ��, cH} , (4.21)

which are much more weakly constrained. One can, in fact, further split the above set into

cH which is constrained only at the O(1) level and the other couplings that are constrained

at the few percent level.
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We are interested in finding instances where the couplings from the second group in

Eq. (4.21) appear in the RGE’s of the first group of couplings in Eq. (4.20). To check

this we rotate the anomalous dimension matrix to the observable basis defined by Eq. (4.15),

Eq. (4.17), and Eq. (4.19). We present the anomalous dimension matrix in the observable

basis in Table 4. Using this, and fixing ⇤ = 2 TeV, we write numerically Eq. (4.5) as

(ĉS, ĉT , ĉW , ĉY , ĉ��, ĉ�Z , ĉ�, ĉgz, ĉ��, ĉH)
t (mt) ' (4.22)

0

BBBBBBBBBBBB@

0.9 0.003 �0.03 �0.08 �0.02 �0.02 �0.04 0.05 �0.01 0.001

0.03 0.8 �0.02 �0.009 0 0 �0.03 0.01 0 �0.003

0.001 0 0.9 0 0 0 �0.001 0.001 0 0

0 0 �0.001 0.8 0 0 0 �0.003 0 0

0 0 0 0 0.9 0 0.006 0 0.02 0

0 0 0 0 0 0.9 0.007 0 0.03 0

0 0 0 0 �0.02 �0.02 0.9 0 �0.01 0

0.0004 �0.0007 �0.0004 0.1 0 0 �0.0004 0.9 0 �0.0007

0 0 0 0 0 0 0 0 0.9 0

�0.02 0.03 0.01 �0.4 0 0 0.02 �0.3 0 0.8

1

CCCCCCCCCCCCA

0

BBBBBBBBBBBB@

ĉS(⇤)

ĉT (⇤)

ĉW (⇤)

ĉY (⇤)

ĉ��(⇤)

ĉ�Z(⇤)

ĉ�(⇤)

ĉgz(⇤)

ĉ��(⇤)

ĉH(⇤)

1

CCCCCCCCCCCCA

.

We can now derive the RG-induced constraints by using Eq. (4.10) assuming no fine-tuning

among the di↵erent terms in the RGE’s.

The strongest RG-induced constraints come from the direct bounds on the Ŝ, T̂ ,W and

Y parameters, i.e. the first four lines in Eq. (4.22). We require that each observable coupling

individually satisfies the four RG-induced constraints from these electroweak precision param-

eters simultaneously. It is very important to take into account the experimental correlations

between Ŝ, T̂ ,W and Y while imposing these bounds [32–34]. Note that the RG-mixing con-

tributions to ĉW and ĉY , from the couplings in the weakly constrained group in Eq. (4.21),

is either absent or accidentally much smaller than the ones to ĉS and ĉT (see the RG contri-

butions to ĉW and ĉY in the third and fourth row of Eq. (4.22)). We, therefore, look at the

constraints on the Ŝ� T̂ plane taking W = Y = 0. We use the Ŝ� T̂ ellipse in ref. [30], which

assumes W = Y = U = 0, to derive our constraints. We present these RG-induced bounds

and compare them with the direct bounds in Table 3 and in Figure 1. We find that for each

of the couplings in the second group we can derive a RG-induced constraint stronger than,

or of the same order of, the direct tree-level constraint. We also obtain RG-induced bounds

from the direct constraint on ĉ�� using the fifth line in Eq. (4.22) and Eq. (4.10),

ĉ� 2 [�0.2, 0.3] ,

ĉ�� 2 [�0.05, 0.10] ,
(4.23)

but at present these bounds are weaker than those from the direct bounds on electroweak

parameters.

Let us briefly comment on alternate choices for our observable basis. A change of ob-

servable basis will in general modify the anomalous dimension matrix of Table 5, also for

the observables which were maintained in the basis. Thus, the RG-induced constraints we

have derived, are applicable only to our particular choice of observables, and for an alternate
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From the h→γγ constraint:

Gfitter 1209.2716

Barbieri, Pomarol, Rattazzi, Strumia!
hep-ph/0405040

LEP EW Working Group!
1302.3415

Pomarol, Riva 1308.2803

—> from S,T
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Λ = 2 TeV

Coupling Direct Constraint

RG-induced

Constraint

ĉS(mt) [�1, 2]⇥ 10�3 [30] -

ĉT (mt) [�1, 2]⇥ 10�3 [30] -

ĉY (mt) [�3, 3]⇥ 10�3 [23] -

ĉW (mt) [�2, 2]⇥ 10�3 [23] -

ĉ��(mt) [�1, 2]⇥ 10�3 [18] -

ĉ�Z(mt) [�0.6, 1]⇥ 10�2 [18] [�2, 6]⇥ 10�2

ĉ�(mt) [�10, 7]⇥ 10�2 [28] [�5, 2]⇥ 10�2

ĉgZ(mt) [�4, 2]⇥ 10�2 [28] [�3, 1]⇥ 10�2

ĉ��(mt) [�6, 2]⇥ 10�2 [28] [�2, 8]⇥ 10�2

ĉH(mt) [�6, 5]⇥ 10�1 [31] [�2, 0.5]⇥ 10�1

Table 3: In this table we present the 95 % CL, direct constraints on the coe�cients in the observ-

able basis (second column). The constraints on Ŝ and T̂ presented here the ones obtained after

marginalizing on the other parameters in the fit of Ref. [30]. In the analysis we use the Ŝ, T̂ -ellipse

from Ref. [30] with U = 0. Simultaneous constraints on all three of the TGC observables do not

exist in the literature, so we have provided the individual constraints on the three couplings without

taking into account correlations between them [28]. In the third column we show the RG-induced

constraint we are able to obtain under the assumption of no fine-tuning in Eq. (4.22).

We are interested in finding instances where the couplings from the second group in

Eq. (4.21) appear in the RGE’s of the first group of couplings in Eq. (4.20). To check

this we rotate the anomalous dimension matrix to the observable basis defined by Eq. (4.15),

Eq. (4.17), and Eq. (4.19). We present the anomalous dimension matrix in the observable

basis in Table 4. Using this, and fixing ⇤ = 2 TeV, we write numerically Eq. (4.5) as

(ĉS, ĉT , ĉY , ĉW , ĉ��, ĉ�Z , ĉ�, ĉgz, ĉ��, ĉH)
t (mt) ' (4.22)

0

BBBBBBBBBBBB@

0.9 0.003 �0.03 �0.08 �0.02 �0.02 �0.04 0.05 �0.01 0.001

0.03 0.8 �0.02 �0.009 0 0 �0.03 0.01 0 �0.003

0.001 0 0.9 0 0 0 �0.001 0.001 0 0

0 0 �0.001 0.8 0 0 0 �0.003 0 0

0 0 0 0 0.9 0 0.006 0 0.02 0

0 0 0 0 0 0.9 0.007 0 0.03 0

0 0 0 0 �0.02 �0.02 0.9 0 �0.01 0

0.0004 �0.0007 �0.0004 0.1 0 0 �0.0004 0.9 0 �0.0007

0 0 0 0 0 0 0 0 0.9 0

�0.02 0.03 0.01 �0.4 0 0 0.02 �0.3 0 0.8

1

CCCCCCCCCCCCA

0

BBBBBBBBBBBB@

ĉS(⇤)

ĉT (⇤)

ĉY (⇤)

ĉW (⇤)

ĉ��(⇤)

ĉ�Z(⇤)

ĉ�(⇤)

ĉgz(⇤)

ĉ��(⇤)

ĉH(⇤)

1

CCCCCCCCCCCCA

.

We can now derive the RG-induced constraints by using Eq. (4.10) assuming no fine-tuning

among the di↵erent terms in the RGE’s.

The strongest RG-induced constraints come from the direct bounds on the Ŝ, T̂ ,W and

Y parameters, i.e. the first four lines in Eq. (4.22). We require that each observable coupling

16


