Window on new physics via the scaling of SM effective operators

David Marzocca - SISSA

Scaling and tuning of EW and Higgs observables arXiv: **1312.2928** J.Elias-Mirò, S. Gupta, C. Grojean, D.M.

21/03/2014

Rencontres de Moriond EW 2014

SM effective theory

(see talk by A. Pomarol)

We assume $\Lambda_{NP} \gg m_h$

In this case it is possible to describe experiments at the electroweak scale using an effective field theory framework:

We assume L and B conservation

59 independent dim-6 operators for 1 family of fermions.

Grzadkowski et al. 1008.4884

EW and Scalar Boson observables

We focus on the following 10 (pseudo-)observables:

 $\hat{S}, \hat{T}, W, Y \qquad g_{1}^{Z}, k_{\gamma}, \lambda_{\gamma} \qquad c_{\gamma\gamma} \qquad c_{\gamma Z} \qquad c_{H}$ $\lesssim 10^{-3} \qquad \lesssim 10^{-2} \qquad \lesssim 10^{-3} \qquad \lesssim 10^{-2} \qquad \lesssim 10^{-2} \qquad \lesssim 0.5$ Gfitter 1209.2716
Barbieri, Pomarol, Rattazzi, Strumia
hep-ph/0405040
EEP EW Working Group
1302.3415
Pomarol, Riva 1308.2803

In our basis these are the relevant 10 operators:

$$\mathcal{O}_{H} = \frac{1}{2} (\partial^{\mu} |H|^{2})^{2}$$

$$\mathcal{O}_{T} = \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2}$$

$$\mathcal{O}_{W} = ig \left(H^{\dagger} \tau^{a} \overset{\leftrightarrow}{D}^{\mu} H \right) D^{\nu} W^{a}_{\mu\nu}$$

$$\mathcal{O}_{B} = ig' Y_{H} \left(H^{\dagger} \overset{\leftrightarrow}{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$$

 $\mathcal{O}_{2W} = -\frac{1}{2} (D^{\mu} W^{a}_{\mu\nu})^{2}$ $\mathcal{O}_{2B} = -\frac{1}{2} (\partial^{\mu} B_{\mu\nu})^{2}$ $\mathcal{O}_{BB} = g'^{2} |H|^{2} B_{\mu\nu} B^{\mu\nu}$ $\mathcal{O}_{WB} = gg' H^{\dagger} \sigma^{a} H W^{a}_{\mu\nu} B^{\mu\nu}$ $\mathcal{O}_{WW} = g^{2} |H|^{2} W^{a}_{\mu\nu} W^{a\mu\nu}$ $\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\,\rho\mu}$

We "rotate" the Wilson coefficients to the observable basis.

RG scaling of the coefficients

The coefficient mix among themselves along this RG flow.

David Marzocca

Moriond EW 2014

RG scaling of the coefficients

Energy scale

 $c_i(\Lambda)$

RG

scaling

$$\delta(\text{obs})_i|_{m_h} = \hat{c}_i(m_h) = \hat{c}_i(\Lambda) - \frac{1}{16\pi^2} \hat{\gamma}_{ij} \hat{c}_j(\Lambda) \log\left(\frac{\Lambda}{m_h}\right)$$

We computed the relevant anomalous dimension matrix

A well known example:

Barbieri et al. 0706.0432

$$\hat{S} = \hat{c}_S(m_Z) = \hat{c}_S(\Lambda) + \frac{g^2}{16\pi^2} \frac{1}{6} \hat{c}_H \log \frac{\Lambda}{m_Z} + \dots$$
$$\hat{T} = \hat{c}_T(m_Z) = \hat{c}_T(\Lambda) - \frac{g'^2}{16\pi^2} \frac{3}{2} \hat{c}_H \log \frac{\Lambda}{m_Z} + \dots$$

Direct bound (from experiment) In <u>absence of tuning or correlations</u> each term should be bounded approximately by the same value.

David Marzocca

m_h

Moriond EW 2014

RG-induced bounds

Moriond EW 2014

Generalizing to the other observables we considered:

Thank you.

To know more, also regarding 3 operators with gluons, have a look at:

Scaling and tuning of EW and Higgs observables <u>1312.2928</u> J.Elias-Mirò, S. Gupta, C. Grojean, D. Marzocca

Moriond EW 2014

"Observable" coefficients $\hat{c}_i \sim \frac{m_W^2}{\Lambda^2} c_i$

EW oblique parameters:

$$\hat{T} = \hat{c}_T(m_W) = \frac{v^2}{\Lambda^2} c_T(m_W) , \quad \hat{S} = \hat{c}_S(m_W) = \frac{m_W^2}{\Lambda^2} \left[c_W(m_W) + c_B(m_W) + 4c_{WB}(m_W) \right]$$
$$Y = \hat{c}_Y(m_W) = \frac{m_W^2}{\Lambda^2} c_{2B}(m_W) , \qquad W = \hat{c}_W(m_W) = \frac{m_W^2}{\Lambda^2} c_{2W}(m_W)$$

Anomalous triple gauge couplings:

$$\delta g_1^Z \equiv \hat{c}_{gZ}(m_W) = -\frac{m_W^2}{\Lambda^2} \frac{1}{c_{\theta_W}^2} c_W(m_W) , \qquad \delta \kappa_\gamma \equiv \hat{c}_{\kappa\gamma}(m_W) = \frac{m_W^2}{\Lambda^2} 4c_{WB}(m_W)$$
$$\lambda_Z \equiv \hat{c}_{\lambda\gamma}(m_W) = -\frac{m_W^2}{\Lambda^2} c_{3W}(m_W) ,$$

SM scalar couplings:

calar couplings:

$$\Delta \mathcal{L}_{H} \supset \frac{\hat{c}_{H}}{2} \frac{(\partial_{\mu}h)^{2}}{2} + \frac{\hat{c}_{\gamma\gamma}e^{2}}{m_{W}^{2}} \frac{h^{2}}{2} \hat{A}_{\mu\nu} \hat{A}^{\mu\nu} + \frac{\hat{c}_{\gamma Z}}{m_{W}^{2}} \frac{eg}{2} \hat{A}_{\mu\nu} \hat{Z}^{\mu\nu}$$

$$\hat{c}_{H}(m_{h}) = \frac{v^{2}}{\Lambda^{2}} c_{H}(m_{h}),$$

$$\hat{c}_{\gamma\gamma}(m_{h}) = \frac{m_{W}^{2}}{\Lambda^{2}} \left(c_{BB}(m_{h}) + c_{WW}(m_{h}) - c_{WB}(m_{h}) \right),$$

$$\hat{c}_{\gamma Z}(m_{h}) = \frac{m_{W}^{2}}{\Lambda^{2}} \left(2c_{\theta_{W}}^{2} c_{WW}(m_{h}) - 2s_{\theta_{W}}^{2} c_{BB}(m_{h}) - (c_{\theta_{W}}^{2} - s_{\theta_{W}}^{2})c_{WB}(m_{h}) \right)$$

David Marzocca

Moriond EW 2014

Beyond S, T, W, Y

To be completely general on the possible NP scenarios in electroweak precision observables from LEP1 and LEP2, in our basis one should consider two more operators:

$$\mathcal{O}_L = (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)(\bar{L}_L \gamma^{\mu} L_L) , \quad \mathcal{O}_{LL}^{1,2} = (\bar{L}_L^1 \sigma^a \gamma^{\mu} L_L^1)(\bar{L}_L^2 \sigma^a \gamma^{\mu} L_L^2)$$

The first one contributes to lepton couplings to the Z boson, the second one to the measurement of the Fermi constant.

Using observables from LEP1 (Z pole) and LEP2 it is possible to constrain the relevant 6 Wilson coefficients at the per mil level. This would require a complete fit of LEP observables, which was beyond the purpose of our work.

The order of magnitude of our RG-induced bound will not change.

RG-induced bounds

Coupling	Direct Constraint	RG-induced Constraint	—> from S,T			
$\hat{c}_S(m_t)$	$[-1,2] \times 10^{-3}$	-				
$\hat{c}_T(m_t)$	$[-1,2] \times 10^{-3}$	-	Barbieri, Pomarol, Rattazzi, Strumia			
$\hat{c}_Y(m_t)$	$[-3,3] \times 10^{-3}$	-				
$\hat{c}_W(m_t)$	$[-2,2] \times 10^{-3}$	-	Gfitter 1209.2716			
$\hat{c}_{\gamma\gamma}(m_t)$	$[-1,2] \times 10^{-3}$	-	Pomarol, Riva 1308.2803			
$\hat{c}_{\gamma Z}(m_t)$	$[-0.6, 1] \times 10^{-2}$	$[-2, 6] \times 10^{-2}$				
$\hat{c}_{\kappa\gamma}(m_t)$	$[-10,7] \times 10^{-2}$	$[-5,2] \times 10^{-2}$	1302.3415			
$\hat{c}_{gZ}(m_t)$	$[-4,2] \times 10^{-2}$	$[-3,1] \times 10^{-2}$				
$\hat{c}_{\lambda\gamma}(m_t)$	$[-6,2] \times 10^{-2}$	$[-2, 8] \times 10^{-2}$				
$\hat{c}_H(m_t)$	$[-6,5] \times 10^{-1}$	$[-2, 0.5] \times 10^{-1}$				

From the $h \rightarrow \gamma \gamma$ constraint:

 $\hat{c}_{\kappa\gamma} \in [-0.2, 0.3] ,$ $\hat{c}_{\lambda\gamma} \in [-0.05, 0.10]$

RG mixing

 $(\hat{c}_S, \hat{c}_T, \hat{c}_Y, \hat{c}_W, \hat{c}_{\gamma\gamma}, \hat{c}_{\gamma Z}, \hat{c}_{\kappa\gamma}, \hat{c}_{gz}, \hat{c}_{\lambda\gamma}, \hat{c}_H)^t (m_t) \simeq$

 $\Lambda = 2 \text{ TeV}$

$ \begin{pmatrix} 0.9\\ 0.03\\ 0.001\\ 0\\ 0\\ 0\\ 0\\ 0.0004\\ 0 \end{pmatrix} $	$\begin{array}{c} 0.003\\ 0.8\\ 0\\ 0\\ 0\\ 0\\ 0\\ -0.0007\\ 0\end{array}$	$ \begin{array}{c} -0.03 \\ -0.02 \\ 0.9 \\ -0.001 \\ 0 \\ 0 \\ -0.0004 \\ 0 \end{array} $	-0.08 -0.009 0 0.8 0 0 0 0.1 0	$ \begin{array}{c} -0.02 \\ 0 \\ 0 \\ 0.9 \\ 0 \\ -0.02 \\ 0 \\ 0 \\ 0 \end{array} $	-0.02 0 0 0 0 0.9 -0.02 0 0	$\begin{array}{c} -0.04 \\ -0.03 \\ -0.001 \\ 0 \\ 0.006 \\ 0.007 \\ 0.9 \\ -0.0004 \\ 0 \end{array}$	0.05 0.01 0.001 -0.003 0 0 0 0 0 0 0 0	-0.01 0 0 0.02 0.03 -0.01 0 0	$ \begin{array}{c} 0.001 \\ -0.003 \\ 0 \\ 0 \\ 0 \\ 0 \\ -0.0007 \\ 0 \end{array} $	$\begin{pmatrix} \hat{c}_{S}(\Lambda) \\ \hat{c}_{T}(\Lambda) \\ \hat{c}_{Y}(\Lambda) \\ \hat{c}_{W}(\Lambda) \\ \hat{c}_{\gamma\gamma}(\Lambda) \\ \hat{c}_{\gamma Z}(\Lambda) \\ \hat{c}_{\kappa\gamma}(\Lambda) \\ \hat{c}_{gz}(\Lambda) \\ \hat{c}_{gz}(\Lambda) \end{pmatrix}$
$ \begin{pmatrix} 0.0004 \\ 0 \\ -0.02 \end{pmatrix} $	-0.0007 0 0.03	-0.0004 0 0.01	$0.1 \\ 0 \\ -0.4$	0 0 0	0 0 0	-0.0004 0 0.02	$\begin{array}{c} 0.9\\0\\-0.3\end{array}$	$\begin{array}{c} 0\\ 0.9\\ 0\end{array}$	$\begin{pmatrix} -0.0007 \\ 0 \\ 0.8 \end{pmatrix}$	$egin{aligned} \hat{c}_{gz}(\Lambda) \ \hat{c}_{\lambda\gamma}(\Lambda) \ \hat{c}_{H}(\Lambda) \end{pmatrix}$

