

CP violation in the $B_{(s)}^0$ system at LHCb

Francesca Dordei

Heidelberg University, Physikalisches Institut
on behalf of the LHCb collaboration

XLIXth Rencontres de Moriond EW - 15-22 March 2014

INTERNATIONAL

XAX PLANCE

XESEARCH SCHOOL

Outline

Highlights of LHCb results on \mathscr{A} in neutral B mesons:

- 1 Polarization amplitudes and CP asymmetries in $B^0 \to \phi K^{*0}$;
- 2 Direct \mathscr{A} in $B^0 \to \Phi K^{*0}$;
- 3 Time dependent \mathscr{P} in $B_s^0 \to K^+K^-$;
- 4 \mathscr{P} in semileptonic asymmetries a_{sl}^s ;
- **6** CP-violating phase, ϕ_s , measurement;
- 6 $B_s^0 \to J/\psi \ \pi^+\pi^-$ amplitude analysis;
- $\overline{B}^0_s \to D^+_s D^-_s$ effective lifetimes.

For other LHCb results:

Constraining the CKM angle gamma at LHCb: see Laurence Carson's talk. Charm mixing and CP violation at LHCb: see Angelo di Canto's talk. Latest results on rare decays from LHCb: see Mitesh Patel's talk.

$B_{(s)}^0$ - $\overline{B}_{(s)}^0$ mixing

Time development of the mixing described by effective Schroedinger equation:

$$i\frac{d}{dt} \begin{pmatrix} B_{(s)}^{0} \\ \overline{B}_{(s)}^{0} \end{pmatrix} = \left(M - \frac{i}{2}\Gamma\right) \begin{pmatrix} B_{(s)}^{0} \\ \overline{B}_{(s)}^{0} \end{pmatrix}$$
$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^{*} & M_{22} \end{pmatrix}; \Gamma = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^{*} & \Gamma_{22} \end{pmatrix}$$

Diagonalizing it in terms of mass eigenstates:

$$i\frac{\underline{d}}{dt}(B_L) = \left(m_L - \frac{i}{2}\Gamma_L\right)(B_L)$$
$$i\frac{\underline{d}}{dt}(B_H) = \left(m_H - \frac{i}{2}\Gamma_H\right)(B_H)$$

Mass eigenstates \neq flavour eigenstates:

$$|B_L\rangle = p |B_{(s)}^0\rangle + q |\overline{B}_{(s)}^0\rangle$$

 $|B_H\rangle = p |B_{(s)}^0\rangle - q |\overline{B}_{(s)}^0\rangle$

Phenomenological mixing parameters:

- Mass difference: $\Delta m_{(s)} = m_H m_L$
- Lifetime difference: $\Delta\Gamma_{(s)}=\Gamma_{\!L}-\Gamma_{\!H}$
- Mixing phase: $\phi_M = \arg(-M_{12}/\Gamma_{12})$

CP violation phenomenology in B mesons

Due to interfering amplitudes with different CKM phases in transitions of particles and antiparticles

CP violation in B decay (direct P)

Difference decay amplitudes: $|\overline{\mathcal{A}}_{\overline{f}}/\mathcal{A}_f| \neq 1$

$$\Gamma(B \to f) \neq \Gamma(\overline{B} \to \overline{f})$$

possible also for charged B hadrons

Ex.
$$B^0_{(s)} o K^+\pi^-$$

CP violation in $B_{(s)}^0$ mixing

CP Violation in Mixing arises when:

$$\mathcal{P}(B_{(s)}^0 \to \overline{B}_{(s)}^0) \neq \mathcal{P}(\overline{B}_{(s)}^0 \to B_{(s)}^0)$$
 or $|q/p| \neq 1$

Ex. Semileptonic asymmetry $a_{sl}^{s,d}$

CP violation in interference between mixing and decays to CP eigenstates

Interference between $B^0_{(s)} o f$ and $B^0_{(s)} o \overline{B}^0_{(s)} o f$.

Even if $|\overline{\mathcal{A}}_f/\mathcal{A}_f|=1$ or |q/p|=1, \mathscr{P} is possible if:

$$\sin \Phi_{d,s} = \operatorname{Im} \left(\left| \frac{q}{p} \frac{\overline{A}_f}{\overline{A}_f} \right| \right) \neq 0$$

Ex. \mathscr{A}^{p} phase $\phi_{\mathcal{S}}$, golden channel: $\mathcal{B}^{0}_{\mathcal{S}} \to J/\psi \phi$

$$\phi_{d,s} = \phi_M - 2 \phi_D$$

Direct CP

$$B^0 \to \Phi K^*(892)^0 - \mathcal{L} = 1 \, \mathrm{fb}^{-1}$$

 $B^0 \to \phi K^*(892)^0$

b → ss̄s̄ FCNC decay, penguin in SM
 ⇒ sensitive to NP contributions in the loop.

•
$$N_{\rm sig} = 1655 \pm 42$$

- Angular analysis of time-integrated decay rates to disentangle helicity structure of the P → VV decay (L= 0, 1, 2):
 - **P-wave**: longitudinal A_0 and transverse, parallel A_{\parallel} and perpendicular A_{\perp} ;
 - S-wave: $\mathcal{A}_{S}(K\pi)$ $(B^{0} \to \varphi K^{+}\pi^{-})$ and $\mathcal{A}_{S}(KK)$ $(B^{0} \to K^{*}(892)^{0}K^{-}K^{+})$.

LHCb

Polarization amplitudes and CP asymmetries in

LHCb

$$B^0
ightarrow \varphi K^*(892)^0$$
 - $\mathcal{L}=1~\mathrm{fb}^{-1}$

- A_0^{CP} $= -0.003 \pm 0.038 \text{ (stat)} \pm 0.005 \text{ (syst)}$ $= +0.047 \pm 0.072$ (stat) ± 0.009 (syst) $= +0.073 \pm 0.091$ (stat) ± 0.035 (syst) A^{CP} S(KK) $= -0.209 \pm 0.105 \text{ (stat)} \pm 0.012 \text{ (syst)}$
- B^0 and \overline{B}^0 decays are separated according to the charge of the kaon from the K^{*0} .
- CP-asymmetries consistent with zero.

[arXiv:1403.2888]

[arXiv:1403.2888]

- Final state tagged by $K^{*0} \to K^+\pi^-$ decay.
- Raw asymmetry measured from integrated rates:

$$A = \frac{N(\overline{B}^0 \to \varphi \overline{K}^*(892)^0) - N(B^0 \to \varphi K^*(892)^0)}{N(\overline{B}^0 \to \varphi \overline{K}^*(892)^0) + N(B^0 \to \varphi K^*(892)^0)}$$

Correcting for production and detection asymmetries (determined using the control channel $B^0 \to J/\psi K^* (892)^0$):

$$\textit{A^{CP}}(\varphi \textit{K}^{*0}) = (+1.5 \pm 3.2 \, (\mathrm{stat}) \, \pm 0.5 \, (\mathrm{syst}))\%$$

- Systematic uncertainty from the difference in kinematic and trigger used to select $B^0 \rightarrow J/\psi K^* (892)^0$ events.
- No direct in agreement with (and a factor of 2 more precise than):

$$A^{CP}(\phi K^{*0}) = (+1 \pm 6 \, (\mathrm{stat}) \pm 3 \, (\mathrm{syst}))\%$$
 Babar [Phys.Rev.D 78, 092008(2008)] $A^{CP}(\phi K^{*0}) = (-0.7 \pm 4.8 \, (\mathrm{stat}) \pm 2.1 \, (\mathrm{syst}))\%$ Belle [Phys.Rev.D 88, 072004(2013)]

F. Dordei (Heidelberg University)

Time dependent \mathscr{QP} in $B^0_s \to K^+K^-$ - $\mathscr{L}=1~{\rm fb}^{-1}$

[J. High Energy Phys. 10 (2013) 183]

Time-dependent CP asymmetry:

$$A^{CP}(t) = \frac{\Gamma_{\overline{B}_s^0 \to K\!K}(t) - \Gamma_{B_s^0 \to K\!K}(t)}{\Gamma_{\overline{B}_s^0 \to K\!K}(t) + \Gamma_{B_s^0 \to K\!K}(t)} = \frac{-C_{K\!K}\cos(\Delta m_{\!s} t) + S_{K\!K}\sin(\Delta m_{\!s} t)}{\cosh\left(\frac{\Delta \Gamma_{\!s}}{2}t\right) - \mathcal{A}_{K\!K}^{\Delta \Gamma_{\!s}}\sinh\left(\frac{\Delta \Gamma_{\!s}}{2}t\right)}$$

where C_{KK} = direct \mathcal{A}^{p} , S_{KK} = mixing-induced \mathcal{A}^{p} and $\mathcal{A}_{KK}^{\Delta\Gamma_{s}} = \mathcal{A}^{p}$ in interference.

Time-dependent analysis, flavour-tagging to identify initial $B_{\rm s}^0$ flavour: calibrated using flavour-specific $B^0 \to K^+\pi^-$ events.

2.7 σ from (0, 0)

 S_{KK}

Time dependent \mathcal{P} in $\mathcal{B}^0 \to \pi^+\pi^-$ - $\mathcal{L}=1~\mathrm{fb}^{-1}$

[J. High Energy Phys. 10 (2013) 183]

Time-dependent CP asymmetry:

$$\mathcal{A}^{CP}(t) = \frac{\Gamma_{\overline{B}^0 \to \pi\pi}(t) - \Gamma_{B^0 \to \pi\pi}(t)}{\Gamma_{\overline{B}^0 \to \pi\pi}(t) + \Gamma_{B^0 \to \pi\pi}(t)} = \frac{-C_{\pi\pi}\cos(\Delta m_d t) + S_{\pi\pi}\sin(\Delta m_d t)}{\cosh\left(\frac{\Delta\Gamma_d}{2}t\right) - \mathcal{A}_{\pi\pi}^{\Delta\Gamma_d}\sinh\left(\frac{\Delta\Gamma_d}{2}t\right)}$$

where $C_{\pi\pi}$ = direct \mathcal{O}^{p} , $S_{\pi\pi}$ = mixing-induced \mathcal{O}^{p} and $\mathcal{A}_{\nu\nu}^{\Delta\Gamma_{s}}$ = \mathcal{O}^{p} in interference.

Time-dependent analysis, flavour-tagging to identify initial B⁰ flavour: calibrated using flavour-specific $B^0 \to K^+\pi^-$ events.

$$C_{\pi\pi}$$
 = -0.38 ± 0.15 ± 0.02
 $S_{\pi\pi}$ = -0.71 ± 0.13 ± 0.02
5.6 σ from (0, 0)

CP violation in the $B_{(s)}^0$ system

CP in mixing

\mathcal{P} in semileptonic asymmetries a_{sl}^s - $\mathcal{L}=1~\mathrm{fb}^{-1}$

Consider a **flavour-specific** final state *f*:

$$\begin{aligned} B_{(s)}^0 &\to f \quad \text{or} \quad \overline{B}_{(s)}^0 \to B_{(s)}^0 \to f \\ \overline{B}_{(s)}^0 &\to \overline{f} \quad \text{or} \quad B_{(s)}^0 \to \overline{B}_{(s)}^0 \to \overline{f} \end{aligned}$$

 $\bullet \ a_{sl} \equiv \frac{\Gamma(\overline{B}_{(s)}^{0}(t) \to f) - \Gamma(B_{(s)}^{0}(t) \to \overline{f})}{\Gamma(\overline{B}_{(s)}^{0}(t) \to f) + \Gamma(B_{(s)}^{0}(t) \to \overline{f})} \cong \frac{\Delta\Gamma}{\Delta M} \tan \phi_{M}$

P in mixing is very small in the SM

$$a_{sl}^{d}(B^{0})^{SM} = (-4.1 \pm 0.6) \cdot 10^{-4}$$

 $a_{sl}^{g}(B_{s}^{0})^{SM} = (+1.9 \pm 0.3) \cdot 10^{-5}$

[Lenz & Nierste, arXiv:1102.4274 [hep-ph]]

 a_{sl}^{s} experimentally: untagged time-integrated asymmetry in **semileptonic flavour-specific** B_{s}^{0}

decays (between $D_s^+ X \mu^- \overline{\nu}_{\mu}$ and $D_s^- X \mu^+ \nu_{\mu}$)

$$\textit{A}_{\textit{measured}}^{\textit{CP}} = \frac{\Gamma[\textit{D}_{\textit{S}}^{-}\,\mu^{+}] - \Gamma[\textit{D}_{\textit{S}}^{+}\,\mu^{-}]}{\Gamma[\textit{D}_{\textit{S}}^{-}\,\mu^{+}] + \Gamma[\textit{D}_{\textit{S}}^{+}\,\mu^{-}]} = \frac{\textit{a}_{\textit{SI}}^{\textit{s}}}{2} + \left[\textit{a}_{\textit{p}} - \frac{\textit{a}_{\textit{SI}}^{\textit{s}}}{2}\right] \cdot \frac{\int e^{-\Gamma_{\textit{S}}t} \cos(\Delta \textit{m}_{\textit{S}}t)\,\epsilon(t)\,dt}{\int e^{-\Gamma_{\textit{S}}t} \cosh(\Delta \Gamma_{\textit{S}}/2t)\,\epsilon(t)\,dt}$$

- $\bullet \ a_0 \equiv (N(B_s^0) N(\overline{B}_s^0)) / (N(B_s^0) + N(\overline{B}_s^0));$
- $\varepsilon(t)$ is the decay time acceptance;
- fast B_s^0 mixing dilutes second term below precision of this measurement.

\mathscr{P} in semileptonic asymmetries a_{sl}^s - $\mathcal{L}=1~\mathrm{fb}^{-1}$

[Physics Letters B 728C (2014), pp. 607-615]

Experimentally: time-integrated asymmetry in semileptonic **flavour-specific f** B_s^0 decays (between $D_s^+ X \mu^- \overline{\nu}_\mu$ and $D_s^- X \mu^+ \nu_\mu$)

$$\textit{A}^{\textit{CP}}_{\textit{measured}} = \frac{\Gamma[\textit{D}^-_{\textit{s}} \mu^+] - \Gamma[\textit{D}^+_{\textit{s}} \mu^-]}{\Gamma[\textit{D}^-_{\textit{s}} \mu^+] + \Gamma[\textit{D}^+_{\textit{s}} \mu^-]} \simeq \frac{\textit{a}^s_{\textit{sl}}}{2}$$

 Correcting the raw-asymmetry for reconstruction and background asymmetries:

$$a_{sl}^s = [-0.06 \pm 0.50 \, (\mathrm{stat}) \, \pm 0.36 \, (\mathrm{syst})]\%$$

- Dominant systematic is from limited statistics in control sample
- 3σ tension with SM in the D0 result, not confirmed or excluded by LHCb.

P in interference of mixing and decay

$B_s^0 \to J/\psi \, \, \varphi$ - Introduction

 $B_s^0 \to J/\psi \, \varphi \, \text{via } b \to c\overline{c}s \, \text{transitions}$:

- predominantly via $B_s^0 \to J/\psi \, \Phi$, with $\Phi \to K^+K^-$. i.e. P-wave.
- small non-resonant component with $K^+K^$ in S-wave.
- Angular analysis to disentangle CP even and CP odd final states.

Analysed sample

- Analysed 1 fb^{-1} of data;
- High statistics: N ~ 27600 signal events
- Low background: narrow J/ψ resonance plus cut on B_s^0 decay time

Decay dominated by tree level diagram:

[Phys. Rev. D 87, 112010]

$B_s^0 o J/\psi \, \, \varphi$ angular and decay time projections

[Phys. Rev. D 87, 112010]

Unbinned maximum likelihood fit in 4 dimensions:

- clear separation of CP even and CP odd angular distributions.
- different lifetimes for CP odd and even components:

$$\Delta\Gamma_{\!s} = \Gamma_{\!L} - \Gamma_{\!H} \approx |\Gamma_{\!\rm CP-odd} - \Gamma_{\!\rm CP-even}|$$

$B^0_s o J/\Psi \ \varphi$ and $B^0_s o J/\Psi \ \pi^+\pi^-$ combined results

[Phys. Rev. D 87, 112010]

The results using $B_s^0 \to J/\psi \, \Phi$ data corresponding to $\mathcal{L} = 1 \, \mathrm{fb}^{-1}$ are:

$$\begin{array}{l} \varphi_{\it s} = 0.07 \pm 0.09 \mbox{ (stat)} \pm 0.01 \mbox{ (syst) rad} \\ \Gamma_{\it s} = 0.663 \pm 0.005 \mbox{ (stat)} \pm 0.006 \mbox{ (syst)} \mbox{ ps}^{-1} \\ \Delta \Gamma_{\it s} = 0.100 \pm 0.016 \mbox{ (stat)} \pm 0.003 \mbox{ (syst)} \mbox{ ps}^{-1} \end{array}$$

A simultaneous fit of $B^0_s o J/\Psi \, \, \varphi$ and $B_s^0 \to J/\Psi \ \pi^+\pi^-$ gives:

$$\Phi_s = 0.01 \pm 0.07$$
 (stat) ± 0.01 (syst) rad

$$\Gamma_s = 0.661 \pm 0.004 \text{ (stat)} \pm 0.006 \text{ (syst) ps}^{-1}$$

$$\Delta\Gamma_{\!s}\,=\,0.106\,\pm\,0.011$$
 (stat) $\pm\,0.007$ (syst) $\rm ps^{-1}$

Ambiguity solved: sign of $\Delta \Gamma_s$ positive!

$B_s^0 o J/\psi \ \pi^+\pi^-$ amplitude analysis

[arXiv:1402.6248 [hep-ex]]

New amplitude analysis with $\mathcal{L} = 3 \, \mathrm{fb}^{-1}!$

- Precise study of CP content;
- Five interfering states required: $f_0(980)$, $f_0(1500)$, $f_0(1790)$, $f_2(1270)$, $f_2'(1525)$;
- Inclusion of non-resonant (NR) $J/\psi \pi^+\pi^-$ also provides a good description of data;
- OP-odd > 97.7% confirmed at 95% CL.

Mixing angle between the $\mathit{f}_{0}(500)$ and $\mathit{f}_{0}(980)$ resonances measured to be $|\varphi_{\textit{m}}| < 7.7^{\circ}$ at 90% CL

- ⇒ most stringent limit ever reported!
- > consistent with these states being tetraquarks.

Effective lifetime to test CP violation

Effective lifetime in CP eigenstates

[Eur.Phys.J. C71 (2011) 1789]

In CP eigenstates the effective lifetime is sensitive to $\Delta \Gamma_s$ and Φ_s (mixing induced QP phase).

Considering a $B_s^0(\overline{B}_s^0) \to f$ transition the untagged decay time distribution is:

$$\Gamma(t) \propto (1 - \mathcal{A}_{\Delta\Gamma_s})e^{-(\Gamma_L t)} + (1 + \mathcal{A}_{\Delta\Gamma_s})e^{-(\Gamma_H t)}$$

with $\mathcal{A}_{\Delta\Gamma_s}$ is a function of ϕ_s .

If we assume no QP then for the CP eigenstates $\mathcal{A}_{\Lambda\Gamma_e}=\pm 1$:

CP even: e.g.
$$\overline{B}^0_s \to D^+_s D^-_s \Rightarrow \Gamma_L$$
 CP odd: e.g. $B^0_s \to J/\Psi f_0(980) \Rightarrow \Gamma_H$

Effective lifetime is the lifetime measured by describing the untagged decay time distribution with a single exponential. Expanding in $y_s = \Delta \Gamma_s/2\Gamma_s$ and using $\tau_{B^0_s} = 2/(\Gamma_L + \Gamma_H) = \Gamma_s^{-1}$:

$$\frac{\tau_f}{\tau_{\textit{B}_s^0}} = 1 + \mathcal{A}_{\Delta\Gamma_s} \textit{y}_s + [2 - (\mathcal{A}_{\Delta\Gamma_s})^2] \textit{y}_s^2 + \mathcal{O}(\textit{y}_s^3)$$

Alternative way to extract ϕ_s and $\Delta\Gamma_s$: $\begin{cases} complementary to e.g. \ B_s^0 \to J/\Psi \varphi \\ No flavour tagging needed \end{cases}$

$\overline{B}^0_s \to D^+_s D^-_s$ effective lifetime - $\mathcal{L}=3\,\mathrm{fb}^{-1}$

- Final state is CP-even. Φ_s is small $\Longrightarrow \tau_{\rm eff} \approx 1/\Gamma_{\rm r}$
- Measure lifetime relative to a similar final state topology decay, $B^- \to D^0 D_s^-$, with well-known lifetime:

$$\tau_{B^-} = 1.641\,\pm\,0.008\;\mathrm{ps}$$

The relative rate is given by:

$$\frac{\Gamma_{\mathcal{B}_s^0(\overline{\mathcal{B}}_s^0) \to \mathcal{D}_s^+ \mathcal{D}_s^-}(t)}{\Gamma_{\mathcal{B}^-(\mathcal{B}^+) \to \mathcal{D}^0(\overline{\mathcal{D}}^0) \mathcal{D}_s^-(\mathcal{D}_s^+)}(t)} \propto \mathrm{e}^{-\alpha t}$$

where:
$$\alpha = 1/\tau_{\overline{B}^0_S \to D^+_S D^-_S} - 1/\tau_{B^-}$$

Main systematic is from acceptance.

$$au_{\overline{B}^0_c o D_c^+ D_c^-}^{ ext{eff}}$$
 =

$$\tau_{\overline{B}_{S}^{0}\to D_{S}^{+}D_{S}^{-}}^{\rm eff} = 1.379 \pm 0.026 \pm 0.017 \; ps \qquad \Gamma_{L} = 0.725 \pm 0.014 \pm 0.009 \; \rm ps^{-1}$$

$$\Gamma_L = 0.725 \pm 0.014 \pm 0.009 \; \mathrm{ps}^{-1}$$

Conclusions

- Large variety of measurements of in the neutral B sector coming from LHCb;
- All results in good agreement with SM;
- Majority of measurements still statistically limited;
- Some measurements still on partial data sample
 full update coming soon!!
- LHC run 2 will start in 2015: center of mass energy $\sqrt{s} \to 13/14$ TeV, so production cross section σ_{bb} doubles;
- Good prospects for the precision measurements in the LHCb upgrade phase: probe New Physics at the percentage level.

Backup Slides

$$B^0
ightarrow \varphi K^*(892)^0$$
 - $\mathcal{L}=1~\mathrm{fb}^{-1}$

[LHCB-PAPER-2014-005]

P- and S-wave fractions are

$$F_{\rm P} = |A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2$$
, $F_{\rm S} = |A_{\rm S}^{K\pi}|^2 + |A_{\rm S}^{KK}|^2$, $F_{\rm P} + F_{\rm S} = 1$, (5)

and

$$\overline{F}_{\rm P} = |\overline{A}_0|^2 + |\overline{A}_{\parallel}|^2 + |\overline{A}_{\perp}|^2 , \qquad \overline{F}_{\rm S} = |\overline{A}_{\rm S}^{K\pi}|^2 + |\overline{A}_{\rm S}^{KK}|^2 , \qquad \overline{F}_{\rm P} + \overline{F}_{\rm S} = 1 . \tag{6}$$

In addition, a convention is adopted such that the phases $\delta_S^{K\pi}$ and δ_S^{KK} are defined as the difference between the P- and S-wave phases at the $K^*(892)^0$ and ϕ meson poles, respectively.

- Angular analysis at Babar and Belle show that the longitudinal and transverse components in the decay have roughly equal amplitudes:
 - similar results seen in other B → VV transitions;
 - in contrast with 3-level decays such as $B^0 \to \rho^+ \rho^-$, where the V-A nature of the weak interactions means that the longitudinal component dominates;
 - possible interpretations: large contributions from penguin annihilation effects or final state interactions.

$$B^0 o \varphi K^*(892)^0$$
 - ${\cal L} = 1~{
m fb}^{-1}$

Table 2: Parameters measured in the angular analysis. The first and second uncertainties are statistical and systematic, respectively.

Parameter	Definition	Fitted value
$f_{ m L}$	$0.5(A_0 ^2/F_{\rm P} + \overline{A}_0 ^2/\overline{F}_{\rm P})$	$0.497 \pm 0.019 \pm 0.015$
f_{\perp}	$0.5(A_{\perp} ^2/F_{\rm P} + \overline{A}_{\perp} ^2/\overline{F}_{\rm P})$	$0.221 \pm 0.016 \pm 0.013$
$f_{\mathrm{S}}(K\pi)$	$0.5(A_{\rm S}^{K\pi} ^2 + \overline{A}_{\rm S}^{K\pi} ^2)$	$0.143 \pm 0.013 \pm 0.012$
$f_{\rm S}(KK)$	$0.5(A_{\rm S}^{KK} ^2 + \overline{A}_{\rm S}^{KK} ^2)$	$0.122 \pm 0.013 \pm 0.008$
δ_{\perp}	$0.5(\arg A_{\perp} + \arg \overline{A}_{\perp})$	$2.633 \pm 0.062 \pm 0.037$
δ_{\parallel}	$0.5(\arg A_{\parallel} + \arg \overline{A}_{\parallel})$	$2.562 \pm 0.069 \pm 0.040$
$\delta_{\mathrm{S}}(K\pi)$	$0.5(\arg A_{\rm S}^{K\pi} + \arg \overline{A}_{\rm S}^{K\pi})$	$2.222 \pm 0.063 \pm 0.081$
$\delta_{\rm S}(KK)$	$0.5(\arg A_{\mathrm{S}}^{KK} + \arg \overline{A}_{\mathrm{S}}^{KK})$	$2.481 \pm 0.072 \pm 0.048$
${\cal A}_0^{CP}$	$(A_0 ^2/F_{\rm P} - \overline{A}_0 ^2/\overline{F}_{\rm P})/(A_0 ^2/F_{\rm P} + \overline{A}_0 ^2/\overline{F}_{\rm P})$	$-0.003 \pm 0.038 \pm 0.005$
${\cal A}_{\perp}^{CP}$	$(A_{\perp} ^2/F_{\rm P} - \overline{A}_{\perp} ^2/\overline{F}_{\rm P})/(A_{\perp} ^2/F_{\rm P} + \overline{A}_{\perp} ^2/\overline{F}_{\rm P})$	$+0.047 \pm 0.074 \pm 0.009$
$A_S(K\pi)^{CP}$	$(A_{\rm S}^{K\pi} ^2 - \overline{A}_{\rm S}^{K\pi} ^2)/(A_{\rm S}^{K\pi} ^2 + \overline{A}_{\rm S}^{K\pi} ^2)$	$+0.073\pm0.091\pm0.035$
$A_S(KK)^{CP}$	$(A_{\rm S}^{KK} ^2 - \overline{A}_{\rm S}^{KK} ^2)/(A_{\rm S}^{KK} ^2 + \overline{A}_{\rm S}^{KK} ^2)$	$-0.209 \pm 0.105 \pm 0.012$
$\delta^{CP}_{\perp} \ \delta^{CP}_{\parallel}$	$0.5(\operatorname{arg} A_{\perp} - \operatorname{arg} \overline{A}_{\perp})$	$+0.062 \pm 0.062 \pm 0.005$
δ_{\parallel}^{CP}	$0.5(\operatorname{arg} A_{\parallel} - \operatorname{arg} \overline{A}_{\parallel})$	$+0.045 \pm 0.069 \pm 0.015$
$\delta_S(K\pi)^{CP}$	$0.5(\arg A_{\mathrm{S}}^{K\pi} - \arg \overline{A}_{\mathrm{S}}^{K\pi})$	$+0.062\pm0.062\pm0.022$
$\delta_S(KK)^{CP}$	$0.5(\arg A_{\rm S}^{KK} - \arg \overline{A}_{\rm S}^{KK})$	$+0.022\pm0.072\pm0.004$

The CP asymmetries in both the amplitudes and the phases are consistent with zero.

$$B^0 o \phi K^*(892)^0$$
 - $\mathcal{L} = 1 \; {
m fb}^{-1}$

Systematic contributions:

- Acceptance of the detector: the angular acceptance is obtained from simulated events and the syst takes into account the limited size of MC.
- Mass model: used to determine the s-weights for the angular analysis, a) for signal DG instead
 of DG+CB b) for bkg first order poly instead of expo c) additional inclusive and exclusive
 backgrounds d) contributions from Λ_b mis.id. bkg added e) lower bound of the range varied.
 Largest difference assigned as a syst.
- S-wave: alternative model of the s-wave considered.
- Data/MC: s-wave component not included in MC, simulated events are reweighted and then
 used to calculate again angular acceptances.

$$B^0 \to \phi K^*(892)^0 - \mathcal{L} = 1 \text{ fb}^{-1}$$

[LHCB-PAPER-2014-005]

$$\begin{array}{ll} f_L & = 0.497 \pm 0.019 \; (\text{stat}) \pm 0.015 \; (\text{syst}) \\ f_{\perp} & = 0.221 \pm 0.016 \; (\text{stat}) \pm 0.013 \; (\text{syst}) \\ f_S(K\pi) & = 0.143 \pm 0.013 \; (\text{stat}) \pm 0.012 \; (\text{syst}) \\ f_S(KK) & = 0.122 \pm 0.013 \; (\text{stat}) \pm 0.008 \; (\text{syst}) \end{array}$$

- Longitudinal and transverse polarizations have similar size (~ 0.5), in agreement with Babar [PRD 78, 092008] and Belle [PRD 88, 072004]
- Significant S-wave contribution

Polarization amplitudes and CP asymmetries in $B^0 \to \phi K^*(892)^0$ - Triple product asymmetries

- Non-zero triple product asymmetries arise either due to a T-violating phase (CP-violation) or a CP-conserving phase and final-state interactions.
- For the P-wave decay two triple product asymmetries are calculated:

$$A_{7}^{1} = \frac{\Gamma(\sin\pm\Phi>0) - \Gamma(\sin\pm\Phi>0)}{\Gamma(\sin\pm\Phi>0) + \Gamma(\sin\pm\Phi>0)} \quad A_{7}^{2} = \frac{\Gamma(\sin2\Phi>0) - \Gamma(\sin2\Phi>0)}{\Gamma(\sin2\Phi>0) + \Gamma(\sin2\Phi>0)}$$

where + is used for $\cos \theta_1 \cos \theta_2 > 0$ and otherwise.

• data can be separated into B^0 and \overline{B}^0 :

$$A_{ ext{true}}^i = rac{A_T^i + \overline{A}_T^i}{2} \hspace{0.5cm} A_{ ext{fake}}^i = rac{A_T^i - \overline{A}_T^i}{2}$$

- in SM Aⁱ_{true} predicted to be 0;
- large values of A_{fake}^i reflect the importance of strong final-state phases.
- Presence of S-wave allows two additional TP asymmetries.

F. Dordei (Heidelberg University)

Polarization amplitudes and CP asymmetries in $B^0 \to \phi K^*(892)^0$ - Triple product asymmetries

Table 3: Triple-product asymmetries. The first and second errors on the measured statistical and systematic, respectively.

Asymmetry	Measured value
$A_T^1(\text{true})$	$-0.007 \pm 0.012 \pm 0.002$
A_T^2 (true)	$+0.004 \pm 0.014 \pm 0.002$
$A_T^3(\text{true})$	$+0.004 \pm 0.006 \pm 0.001$
A_T^4 (true)	$+0.002 \pm 0.006 \pm 0.001$
$A_T^1(\text{fake})$	$-0.105 \pm 0.012 \pm 0.006$
$A_T^2(\text{fake})$	$-0.017 \pm 0.014 \pm 0.003$
$A_T^3(\text{fake})$	$-0.063 \pm 0.006 \pm 0.005$
$A_T^4(\text{fake})$	$-0.019 \pm 0.006 \pm 0.007$

- The true asymmetries are consistent with zero, showing no evidence for physics beyond the Standard Model
- In contrast, all but one of the fake asymmetries are significantly different from zero, indicating the presence of final-state interactions.

Time dependent \mathcal{AP} in $B^0_s \to K^+K^-$ - $\mathcal{L}=1~\mathrm{fb}^{-1}$

- CP-violation in charmless two-body decays is a good test of CKM;
- quantitative SM predictions for CP violation are challenging because of the presence of (loop) penguin amplitudes, in addition to tree level
 - ⇒ knowledge of hadronic factors required
- necessary to combine several measurements using approximate flavour symmetries in order to cancel uncertainties on hadronic factors.
- Belle and Babar performed isospin analysis of $B \to \pi\pi$, determining the phase of the CKM matrix;
- hadronic parameters entering $B^0 \to \pi^+\pi^-$ and $B^0_s \to K^+K^-$ are related by U-spin symmetry \Longrightarrow experimental knowledge of $B^0_s \to K^+K^-$ can improve the determination of the CKM phase.
- LHCb performed measurements of time integrated CP asymmetries in $B^0 \to K^+\pi^-$ and $B^0_s \to K^-\pi^+$, plus several BR.

Time dependent \mathcal{P} in $\mathcal{B}^0_s o \mathcal{K}^+\mathcal{K}^-$ - $\mathcal{L}=1~\mathrm{fb}^{-1}$

$$A_{CP} = \frac{\mathcal{B}(\overline{B} \to \overline{f}) - \mathcal{B}(B \to f)}{\mathcal{B}(\overline{B} \to \overline{f}) + \mathcal{B}(B \to f)},$$

$$A_{f} = \frac{\varepsilon_{\text{rec}}(\overline{f}) - \varepsilon_{\text{rec}}(f)}{\varepsilon_{\text{rec}}(\overline{f}) + \varepsilon_{\text{rec}}(f)},$$

$$A_{P} = \frac{\mathcal{R}(\overline{B}) - \mathcal{R}(B)}{\mathcal{R}(\overline{B}) + \mathcal{R}(B)},$$

- $\epsilon_{\rm rec}$ is zero if $f = \overline{f}$
- A fit to the $K^{\pm}\pi^{\mp}$ mass and time spectra is performed to determine the performance of the flavour tagging and the B^0 and B_c^0 production asymmetries.
- Average tagging power (OST): $\epsilon_{\it eff} = (2.45 \pm 0.25)\%$ (no significant asymmetries between $B_{(s)}^0$ and $\overline{B}_{(s)}^0$
- Production asymmetries: $A_P(B^0) = (0.6 \pm 0.9)\%$ and $A_P(B^0_s) = (7 \pm 5)\%$
- Decay time resolution: correcting $J/\psi \to \mu\mu$ resolution with a correction factor taken from MC we get 50 ± 0 fs (with a bias of less than 2 fs).

F. Dordei (Heidelberg University)

Time dependent \mathcal{CP} in $\mathcal{B}^0_s o \mathcal{K}^+\mathcal{K}^-$ - $\mathcal{L}=1~\mathrm{fb}^{-1}$

Systematic uncertainty		C_{KK}	S_{KK}	$C_{\pi\pi}$	$S_{\pi\pi}$
Particle identification		0.003	0.003	0.002	0.004
Flavour tagging		0.008	0.009	0.010	0.011
Production asymmetry		0.002	0.002	0.003	0.002
Signal mass:	final state radiation	0.002	0.001	0.001	0.002
	shape model	0.003	0.004	0.001	0.004
Bkg. mass:	combinatorial	< 0.001	< 0.001	< 0.001	< 0.001
	cross-feed	0.002	0.003	0.002	0.004
	acceptance	0.010	0.018	0.002	0.003
C:	resolution width	0.020	0.025	< 0.001	< 0.001
Sig. decay time:	resolution bias	0.009	0.007	< 0.001	< 0.001
	resolution model	0.008	0.015	< 0.001	< 0.001
Bkg. decay time:	cross-feed	< 0.001	< 0.001	0.005	0.002
	combinatorial	0.008	0.006	0.015	0.011
	three-body	0.001	0.003	0.003	0.005
Ext. inputs:	Δm_s	0.015	0.018	-	-
	Δm_d	_	-	0.013	0.010
	Γ_s	0.004	0.005	-	-
Total		0.032	0.042	0.023	0.021

\mathcal{P} in semileptonic asymmetries a_{sl}^s

The measurement can be affected by a detection charge-asymmetry, which may be induced by event selection, tracking, and muon selection.

$$A_{CP}^{measured} = A_{\mu}^{c} + A_{track} - A_{bkg}$$

where:

$$A^c_{\mu} = \frac{N(D^-_s \mu^+) - N(D^+_s \mu^-) \times \frac{\varepsilon(\mu^+)}{\varepsilon(\mu^-)}}{N(D^-_s \mu^+) + N(D^+_s \mu^-) \times \frac{\varepsilon(\mu^+)}{\varepsilon(\mu^-)}}$$

- $N(D_s^-\mu^+)$ and $N(D_s^+\mu^-)$ are the measured yields of $D_s\mu$ pairs;
- $\epsilon(\mu^{\pm})$ are efficiency corrections accounting for trigger and muon identification effects;
- A_{track} is the track-reconstruction asymmetry of charged particles, due to the magnet that bends
 particles of different charge in different detector halves;
- A_{bka} accounts for asymmetries induced by backgrounds.

\mathcal{CP} in semileptonic asymmetries a_{sl}^s

Figure 3: Relative muon efficiency as a function of muon momentum determined using the kinematically-selected J/ψ sample.

- relative efficiencies for triggering and identifying muons.
- constistent with being independent of momentum.
- small 1% differences due to alignment of the muon stations, which affects predominantly the hardware muon trigger.

\mathcal{CP} in semileptonic asymmetries a_{sl}^s

 A_{track} is the track-reconstruction asymmetry of charged particles, due to the magnet that bends particles of different charge in different detector halves

- $A_{track}^{\pi\mu} = (+0.01 \pm 0.13)\%$: small because the pion and muon asymmetries are the same but they have opposite sign $(D_s^{\pm}(\phi\pi^{\pm})\mu^{\mp})$;
- $A_{track}^{KK} = (+0.012 \pm 0.004)\%$: residual charge asymmetries in K reconstruction due to a slight momentum mismatch between the two kaons from the ϕ arising from the interference with the S-wave component.
- The total tracking asymmetry is: $A_{track} = (+0.02 \pm 0.13)\%$
- The total background asymmetry is: $A_{back} = (+0.05 \pm 0.05)\%$

\mathcal{CP} in semileptonic asymmetries a_{sl}^s

Table 3: Sources of systematic uncertainty on A_{meas} .

Source	$\sigma(A_{\rm meas})[\%]$
Signal modelling and muon correction	0.07
Statistical uncertainty on the efficiency ratios	0.08
Background asymmetry	0.05
Asymmetry in track reconstruction	0.13
Field-up and field-down run conditions	0.01
Software trigger bias (topological trigger)	0.05
Total	0.18

Flavour tagging - B_S^0 or \overline{B}_S^0 ? [Eur.Phys.J. C72(2012) 2022] [LHCb-CONF-2012-033]

Tagging: determine flavour of decaying B_s^0 -meson at production.

Needs precise knowledge of mistag probability, ω_{mistag} :

$$A_{CP}(t) = -\eta_{CP} \cdot \boxed{D_{\mathrm{tag}}(\omega_{\mathrm{mistag}})} \cdot D_{\mathrm{t_{res}}}(\sigma_t) \cdot \sin{(\varphi_s)} \cdot \sin{(\Delta m_s t)}$$

$$D_{\rm tag} = (1-2\omega_{\rm mistag})$$

Using SSK and OS tagging algorithms fully optimized and calibrated on data $|\omega_{
m mistag}pprox 36\%|$

$$\omega_{\rm mistag}\approx 36\%$$

• effective tagging power $\varepsilon_{tag} D_{\mathrm{tag}}^2 = (3.13 \pm 0.12 \pm 0.20)\%$

Same tagging power as a dataset containing $\epsilon_{tag}D_{tag}^2N$ perfectly tagged events.

$B_s^0 o J/\psi \, \, \varphi \, \, \text{systematics}$

Table 9: Statistical and systematic uncertainties.

Source	Γ_s	$\Delta\Gamma_s$	$ A_{\perp} ^2$	$ A_0 ^2$	δ_{\parallel}	δ_{\perp}	ϕ_s	$ \lambda $
	$[ps^{-1}]$	$[ps^{-1}]$, -,	[rad]	[rad]	[rad]	
Stat. uncertainty	0.0048	0.016	0.0086	0.0061	$^{+0.13}_{-0.21}$	0.22	0.091	0.031
Background subtraction	0.0041	0.002	_	0.0031	0.03	0.02	0.003	0.003
$B^0 \to J/\psi K^{*0}$ background	_	0.001	0.0030	0.0001	0.01	0.02	0.004	0.005
Ang. acc. reweighting	0.0007	_	0.0052	0.0091	0.07	0.05	0.003	0.020
Ang. acc. statistical	0.0002	_	0.0020	0.0010	0.03	0.04	0.007	0.006
Lower decay time acc. model	0.0023	0.002	_	_	_	_	_	_
Upper decay time acc. model	0.0040	_	_	_	_	_	_	_
Length and mom. scales	0.0002	_	_	_	_	_	_	_
Fit bias	_	_	0.0010	_	_	_	_	_
Decay time resolution offset	_	_	_	_	_	0.04	0.006	_
Quadratic sum of syst.	0.0063	0.003	0.0064	0.0097	0.08	0.08	0.011	0.022
Total uncertainties	0.0079	0.016	0.0107	0.0114	$^{+0.15}_{-0.23}$	0.23	0.092	0.038

[Phys. Rev. D 87, 112010]

$B_c^0 \to J/\psi \, \phi$ penguin pollutions

- Standar Model prediction is obtained ignoring penguin pollutions
- Experimentally an angular analysis in $B_s^0 \to J/\psi \ K^{*0}$ can give information about penguin contributions to $B_s^0 \to J/\psi \ \phi$

First step: "Measurement of the $B^0_s o J/\psi K^{*0}$ branching fraction and angular amplitudes" [Phys. Rev. D 86, 071102(R) (2012)]

$$\textit{BR} = (4.4^{+0.5}_{-0.4} \pm 0.8) \times 10^{-5}$$

Determining the sign of $\Delta\Gamma_{\rm s}$

Two solutions to the decay rates in $B_s^0 \to J/\Psi \Phi$:

Solution I $\delta - \delta_0$ $\delta_{\perp} - \delta_{0}$ $\delta_s - \delta_0$ Φ_s

 $\Delta\Gamma_{\rm s}$

Solution II $\delta_0 - \delta$ $\pi - \delta_0 - \delta_\perp$ $\delta_0 - \delta_s$ $\pi - \phi_s$ $-\Delta\Gamma_{e}$

[Phys. Rev. D 87, 112010]

- P-wave phase (δ_{\perp}) increases rapidly across $\phi(1020)$ mass resonance, S-wave (δ_s) varies slowly.
- Measuring $\delta_s \delta_\perp$ in bins of $M(K^+K^-)$ resolves the ambiguity.
- LHCb results using $\mathcal{L} = 1 \text{ fb}^{-1}$ in 6 bins of $M(K^+K^-)$:

The physical solution has to decrease in bins of $M(K^+K^-)$

Solution I confirmed \Longrightarrow positive $\Delta\Gamma_s$ fits expectations.

$B_c^0 \to J/\psi \pi^+ \pi^-$ resonance contribution

- Resonances that decay into a $\pi^+\pi^-$ pair must be isoscalar (I=0), because $s\overline{s}$ system has I=0.
- To test it the isospin-1 $\rho(770)$ meson is added.
- The non-resonance (NR) is assumed to be S-wave.
- In previous analysis a resonant-state at (1475±6) MeV was observed and identified as $f_0(1370)$. Now identified with $f_0(1500)$.
- New structure visible around 1800 MeV \Rightarrow could be $f_0(1790)$ observed by BES [Phys.Lett.B607:243-253 (2005)]

Table 2: Possible resonance candidates in the $\bar{B}_s^0 \to J/\psi \pi^+ \pi^-$ decay mode and their parameters used in the fit.

	Resonance	Spin	Helicity	Resonance	Mass (MeV)	Width (MeV)	Source
				formalism			
	$f_0(500)$	0	0	BW	471 ± 21	534 ± 53	LHCb [19]
	$f_0(980)$	0	0	Flatté		see text	
	$f_2(1270)$	2	$0,\pm 1$	$_{ m BW}$	1275.1 ± 1.2	$185.1^{+2.9}_{-2.4}$	PDG [6]
	$f_0(1500)$	0	0	$_{ m BW}$		see text	
	$f_2'(1525)$	2	$0,\pm 1$	$_{ m BW}$	1522^{+6}_{-3}	84^{+12}_{-8}	LHCb [28] PDG [6]
	$f_0(1710)$	0	0	$_{ m BW}$	1720 ± 6	135 ± 8	
	$f_0(1790)$	0	0	$_{ m BW}$	1790^{+40}_{-30}	270^{+60}_{-30}	BES [27]
_	$\rho(770)$	1	$0, \pm 1$	BW	775.49 ± 0.34	149.1 ± 0.8	PDG 6

$B_c^0 \to J/\psi \pi^+ \pi^-$ compare models

In order to compare different models quantitatively an estimate of the goodness of fit is calculated:

$$\chi^2 = 2\sum_{i=1}^{N_{bin}} \left[x_i - n_i + n_i ln\left(\frac{n_i}{x_i}\right) \right]$$

where n_i is the number of events in the four dimensional bin i and x_i is the expected number of events according to the fitted likelihood function.

- 5R: $f_0(980)$, $f_0(1500)$, $f_0(1790)$, $f_2(1270)$, $f_2'(1525)$
- Solution I: minima with no significant NR, Solution II: minima with significant NR

Table 3: Fit $-\ln \mathcal{L}$ and v^2/ndf of different resonance models.

rable of the income and a product		
Resonance model	$-\mathrm{ln}\mathcal{L}$	χ^2/ndf
5R (Solution I)	-93738	2005/1822 = 1.100
5R+NR (Solution I)	-93741	2003/1820 = 1.101
$5R+f_0(500)$ (Solution I)	-93741	2004/1820 = 1.101
$5R+f_0(1710)$ (Solution I)	-93744	1998/1820 = 1.098
$5R + \rho(770)$ (Solution I)	-93742	2004/1816 = 1.104
5R+NR (Solution II)	-93739	2008/1820 = 1.103
$5R+NR+f_0(500)$ (Solution II)	-93741	2004/1818 = 1.102
$5R+NR+f_0(1710)$ (Solution II)	-93745	2004/1818 = 1.102
$5R+NR+\rho(770)$ (Solution II)	-93746	1998/1814 = 1.101

$B_s^0 o J/\psi \pi^+ \pi^-$ compare models

- For both Solution I and II dominant contribution is S-wave including: $f_0(980)$, $f_0(1500)$, $f_0(1790)$;
- D-wave $f_2(1270)$, $f_2'(1525)$ is only 2.3% for both solutions.

Table 4: Fit fractions (%) of contributing components for both solutions.

Component	Solution I	Solution II
$f_0(980)$	$70.3 \pm 1.5^{+0.4}_{-5.1}$	$92.4 \pm 2.0^{+0.8}_{-16.0}$
$f_0(1500)$	$10.1 \pm 0.8^{+1.1}_{-0.3}$	$9.1 \pm 0.9 \pm 0.3$
$f_0(1790)$	$2.4 \pm 0.4^{+5.0}_{-0.2}$	$0.9 \pm 0.3^{+2.5}_{-0.1}$
$f_2(1270)_0$	$0.36 \pm 0.07 \pm 0.03$	$0.42 \pm 0.07 \pm 0.04$
$f_2(1270)_{\parallel}$	$0.52 \pm 0.15^{+0.05}_{-0.02}$	$0.42 \pm 0.13^{+0.11}_{-0.02}$
$f_2(1270)_{\perp}$	$0.63 \pm 0.34^{+0.16}_{-0.08}$	$0.60 \pm 0.36^{+0.12}_{-0.09}$
$f_2'(1525)_0$	$0.51 \pm 0.09^{+0.05}_{-0.04}$	$0.52 \pm 0.09^{+0.05}_{-0.04}$
$f_2'(1525)_{\parallel}$	$0.06^{+0.13}_{-0.04} \pm 0.01$	$0.11^{+0.16+0.03}_{-0.07-0.04}$
$f_2'(1525)_{\perp}$	$0.26 \pm 0.18^{+0.06}_{-0.04}$	$0.26 \pm 0.22^{+0.06}_{-0.05}$
NR	-	$5.9 \pm 1.4^{+0.7}_{-4.6}$
Sum	85.2	110.6
$-ln\mathcal{L}$	-93738	-93739
χ^2/ndf	2005/1822	2008/1820

$B_s^0 \to J/\psi \pi^+ \pi^-$ fit results

- $f_0(500)$ states does not have a significant fit fraction
- Upper limit for the fit fraction ratio between $f_0(500)$ and $f_0(980)$ of 0.3% from Solution I and 3.4% from Solution II at 90% CL
- $\rho(770)$ states does not have a significant fit fraction
- $\rho(770)$ fit fraction 0.60 \pm 0.30 $^{+0.08}_{-0.14}$ from Solution I and 1.02 \pm 0.36 $^{+0.09}_{-0.15}$ from Solution II.
- mass of f_0 (1790) in good agreement with BES result.

$B_s^0 o J/\psi \pi^+\pi^-$ systematics

- Acceptance: fit repeated in data 100 times with the acceptance randomly generated according
 to the corresponding error matrix.
- Background modeling: fit repeated in data 100 times with the background function randomly
 generated according to the corresponding error matrix.
- Fit model: a) possible contributions of resonances in slide 44 but not used in the baseline solution, b) hadron scale *r* parameters in the Blatt-Weisskopf barrier factors varied from 5.0 GeV⁻¹ to 3.0 GeV⁻¹ for B meson and from 1.5 GeV⁻¹ to 3.0 GeV⁻¹ for R resonance, c) using F_{KK}=1 in the Flattè function.
 - \Rightarrow largest deviation taken as a systematic.
- Resonance parameters: repeating data fit by varying the mass and width of resonances within their errors one at time and add the changes in quadrature.
- **Negligible:** value of ϕ_s , efficiency function $\epsilon(t)$, Γ_s and $\Delta\Gamma_s$ uncertianties, L_B choice¹.

¹ for $\tau = \bot$ amplitude, the L_B value of a spin-1 (or 2) resonance is 1 (or 2); the other transversity components (0 and \parallel) have two possible L_B values of 0 and 2 (or 1 and 3) for spin-1 (or 2) resonances. In this analysis the lower one is used.

$B_{\rm s}^0 \to J/\psi \pi^+\pi^-$ mixing angles

When the σ and f_0 are considered as $q\bar{q}$ states there is the possibility of their being mixtures of light and strange quarks that is characterized by a 2×2 rotation matrix with a single parameter, the angle ϕ , so that their wave-functions are

$$|f_0\rangle = \cos \phi |s\bar{s}\rangle + \sin \phi |n\bar{n}\rangle$$

 $|\sigma\rangle = -\sin \phi |s\bar{s}\rangle + \cos \phi |n\bar{n}\rangle,$
where $|n\bar{n}\rangle \equiv \frac{1}{\sqrt{2}} (|u\bar{u}\rangle + |d\bar{d}\rangle).$ (1)

While there have been several attempts to measure the mixing angle ϕ , the model dependent results give a wide range of values. We describe here only a few examples. D^{\pm} and D_s^{\pm} decays into $f_0(980)\pi^{\pm}$ and $f_0(980)K^{\pm}$ give values of $31^{\circ} \pm 5^{\circ}$ or $42^{\circ} \pm 7^{\circ}$ [10]. $D_s^+ \to \pi^+ \pi^+ \pi^-$ transitions give a range 35° < $|\phi|$ < 55° [11]. In light meson radiative decays two solutions are found either $4^{\circ} \pm 3^{\circ}$ or $136^{\circ} \pm 6^{\circ}$ 12. Resonance decays from both $\phi \to \gamma \pi^0 \pi^0$ and $J/\psi \to \omega \pi \pi$ give a value of $\simeq 20^\circ$. On the basis of SU(3), a value of 19° ± 5° is provided [13]. Finally, Ochs [14], averaging over several processes, finds $30^{\circ} \pm 3^{\circ}$

When these states are viewed as $q\bar{q}q\bar{q}$ states the wave functions becomes

$$|f_0\rangle = \frac{1}{\sqrt{2}} ([su][\bar{s}\bar{u}] + [sd][\bar{s}\bar{d}]), |\sigma\rangle = [ud][\bar{u}\bar{d}].$$
 (2)

In this Letter we assume the tetraquark states are unmixed, for which there is some justification [2,10,15], with a mixing angle estimate of $< 5^{\circ}$ [9].

How effective lifetime can constrain ϕ_s

Fleischer, Kneijens [arXiv:1209.3206]

Using effective lifetime to constrain $\Delta\Gamma_{\!s}$ and $\varphi_{\!s}$

Usina:

$$\tau_{\textit{K}^{+}\textit{K}^{-}} = [\text{1.455} \pm \text{0.046 (stat)} \pm \text{0.006 (syst)}] \text{ ps} \\ \text{[Phys.Lett. B716 (2012) 393-400]}$$

 $au_{J/\Psi f_0} = [1.700 \pm 0.040 ext{ (stat)} \pm 0.026 ext{ (syst)}] ext{ ps} \ ext{[LHCb-PAPER-2012-017, arXiv: 1207.0878]}$

Inluding direct measurement

Using:

 $\Phi_s = -0.002 \pm 0.083 \text{ (stat) } \pm 0.027 \text{ (syst) rad}$ $\Delta \Gamma_s = 0.116 \pm 0.018 \text{ (stat) } \pm 0.006 \text{ (syst) } \text{ps}^{-1}$ [LHCb-CONF-2012-002]

$\overline{\it B}^0_s o \it D^+_s\it D^-_s$ effective lifetime - $\it \mathcal{L}=3\,{ m fb}^{-1}$

Channel	CP	$ au^{ m eff}$ [ps]	Ref.
$\overline{B}_s^0 o D_s^+ D_s^- \ \overline{B}_s^0 o K^+ K^-$	even	$1.379 \pm 0.026 \pm 0.017$	arxiv:1312.1217, PRL
$\overline{\mathit{B}}_{s}^{0} o \mathit{K}^{+}\mathit{K}^{-}$	even	$1.455 \pm 0.046 \pm 0.006$	PLB 716 (2012) 393-400
$\overline{B}_s^0 \to J/\psi f_0(980)$	odd	$1.700 \pm 0.040 \pm 0.026$	PRL 109 (2012) 152002
$ \begin{array}{c} \overline{B}_{s}^{0} \to J/\psi K_{S}^{0} \\ \overline{B}_{s}^{0} \to D^{-}D_{s}^{+} \end{array} $	odd	$1.75 \pm 0.12 \pm 0.07$	Nucl. Phys. B 873 (2013) 275-292
$\overline{B}_s^0 o D^- D_s^+$	FS	$1.52 \pm 0.15 \pm 0.01$	arxiv:1312.1217, PRL

- Perform naive combination of these lifetimes and results on $\Delta\Gamma_s$ and Γ_s from $B^0_s \to J/\psi \pi \pi$
 - Everything in agreement with SM+HQE predictions.

LHCb upgrade

End of Run2 $\int L dt = 3 \text{ fb}^{-1}$ $\int L dt = 8 \text{ fb}^{-1}$ $\int L dt = 50 \text{ fb}^{-1}$

	J 241 - 210	J 2 010	J 2 50 10	
Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
$\phi_s(B^0_s o J/\!\psi\phi) \; ({ m rad})$	0.05	0.025	0.009	~ 0.003
$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ ({\rm rad})$	0.09	0.05	0.016	~ 0.01
$A_{ m sl}(B_s^0) (10^{-3})$	2.8	1.4	0.5	0.03
$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.18	0.12	0.026	0.02
$\phi_s^{ ext{eff}}(B^0_s o K^{*0}ar K^{*0})$ (rad)	0.19	0.13	0.029	< 0.02
$2eta^{ m eff}(B^0 o\phi K^0_S)$ (rad)	0.30	0.20	0.04	0.02
$\phi_s^{\text{eff}}(B_s^0 o \phi \gamma)$	0.20	0.13	0.030	< 0.01
$ au^{ m eff}(B^0_s o\phi\gamma)/ au_{B^0_s}$	5%	3.2%	0.8 %	0.2%
$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
$q_0^2 A_{\mathrm{FB}}(B^0 o K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/}c^4)$	0.14	0.07	0.024	~ 0.02
$\mathcal{B}(B^+ o \pi^+ \mu^+ \mu^-)/\mathcal{B}(B^+ o K^+ \mu^+ \mu^-)$	14%	7%	2.4%	~ 10%
${\cal B}(B^0_s o\mu^+\mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
${\cal B}(B^0 o \mu^+\mu^-)/{\cal B}(B^0_s o \mu^+\mu^-)$	220%	110%	40%	~ 5 %
$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	1.1°	negligible
$\gamma(B^0_s o D_s^\mp K^\pm)$	17°	11°	2.4°	negligible
$\beta(B^0 \to J/\psi K_S^0)$	1.7°	0.8°	0.31°	negligible
$A_{\Gamma}(D^0 \to K^+K^-) \ (10^{-4})$	3.4	2.2	0.5	-
$\Delta A_{C\!P}~(10^{-3})$	0.8	0.5	0.12	-
	$\begin{array}{c} \phi_s(B_s^0 \to J/\psi \phi) \ ({\rm rad}) \\ \phi_s(B_s^0 \to J/\psi f_0(980)) \ ({\rm rad}) \\ A_{sl}(B_s^0) \ (10^{-3}) \\ \phi_s^{\rm eff}(B_s^0 \to \phi\phi) \ ({\rm rad}) \\ \phi_s^{\rm eff}(B_s^0 \to \phi\phi) \ ({\rm rad}) \\ \phi_s^{\rm eff}(B_s^0 \to \phi K^*) \ ({\rm rad}) \\ \phi_s^{\rm eff}(B_s^0 \to \phi K^*) \ ({\rm rad}) \\ \phi_s^{\rm eff}(B_s^0 \to \phi K^*) \\ \tau^{\rm eff}(B_s^0 \to \phi \gamma) \\ \tau^{\rm eff}(B_s^0 \to \phi \gamma) / \tau_{B_s^0} \\ S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4) \\ q_0^2 A_{\rm FB}(B^0 \to K^{*0}\mu^+\mu^-) \\ A_1(K\mu^+\mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4) \\ \mathcal{B}(B^+ \to \pi^+\mu^+\mu^-)/\mathcal{B}(B^+ \to K^+\mu^+\mu^-) \\ \mathcal{B}(B_s^0 \to \mu^+\mu^-) \ (10^{-9}) \\ \mathcal{B}(B^0 \to \mu^+\mu^-)/\mathcal{B}(B_s^0 \to \mu^+\mu^-) \\ \gamma(B \to D^{(*)}K^{(*)}) \\ \gamma(B_s^0 \to D_s^+K^+) \\ \beta(B^0 \to J/\psi K_s^0) \\ A_{\Gamma}(D^0 \to K^+K^-) \ (10^{-4}) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$