v Oscillation Results
Rencontres de Moriond (EW)
March 17, 2013
Patrick de Perio
University of Toronto
for the T2K Collaboration

Neutrino oscillation review

• The T2K experiment

- Results this winter
 - Update to v_{μ} disappearance: $\sin^2 2\theta_{23}$ and Δm_{32}^2
 - Finalized $v_{\mu} \rightarrow v_{e}$ appearance observation
 - New joint v_{μ} + v_{e} analysis released for the first time
- Future prospects

TZK Neutrino Oscillations: Current Status

T2 Neutrino Oscillations: Remaining Questions

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \Delta$$

• and $v_{\mu} \rightarrow v_{e}$ Appearance

$$P\begin{pmatrix} \stackrel{(-)}{v_{\mu}} \rightarrow \stackrel{(-)}{v_{e}} \end{pmatrix} \approx \sin^{2} 2\theta_{13} \times \sin^{2} \theta_{23} \frac{\sin^{2}[(1 \mp x)\Delta]}{(1 \mp x)^{2}}$$
$$\mp \sin \delta_{CP} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1 \mp x)\Delta]}{(1 \mp x)} \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}$$

...towards an understanding beyond the Standard Model; mixing matrix structure, origin of v mass m_i , leptogenesis...

Rencontres de Moriond, March 17, 2014

 $\Delta \equiv \frac{\Delta m_{31}^2}{2}$

Rencontres de Moriond, March 17, 2014

T2K Data Set

- Today's results stem from the great efforts of the J-PARC accelerator division
- Total delivered beam: 6.57×10^{20} protons on target
 - 8% of ultimate goal

Neutrino Beamline

Rencontres de Moriond, March 17, 2014

Near Detectors

ND280 Off-axis

<u>Tracker Section</u> Fine Grained Detectors – Active target mass – Vertex reconstruction

- Time Projection Chambers
- Momentum reconstruction
- Particle identification (PID)

Measure v flux and interaction cross sections

INGRID

- Monitor v beam direction θ & intensity - $\delta\theta < 1 \text{ mrad} \rightarrow \delta E_v < 3\%$
- Very stable!

"Neutrino Interactions at T2K" K. Suzuki @ Moriond QCD

Rencontres de Moriond, March 17, 2014

~10m

.<mark>5</mark>°

ND280 Tracker Event Selection

Rencontres de Moriond, March 17, 2014

Super-Kamiokande

- 22.5 kton fiducial volume water Cherenkov detector
- Inner detector with ~11k PMTs
- Outer detector determines fully contained events
- Very good *e*/μ separation

T2K-SK Event Selection

Rencontres de Moriond, March 17, 2014

Systematic Errors

seconstructed v En	After ND280 Constraint	¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	Before ND280 Constraint After ND280 Constraint V_{μ} 1 1 1 1 1 1 1 1
Relative Uncertainty in # of v_e Candidates (%)	Systematic Error Source		Relative Uncertainty in # of v_{μ} Candidates (%)
2.9	Flux 🗣 Xsec. (ND2	280 constrained)	2.7
4.7	Xsec. (ND280-i	independent)	4.9
2.3	π Hadronic I	nteractions	3.5
2.6	SK Det	ector	4.4
6.8	Tot	al	8.1

: Correlated

 $\sin^2 2\theta_{13} = 0.1$, $\sin^2 2\theta_{23} = 1$, $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, NH, $\delta_{CP} = 0$

Rencontres de Moriond, March 17, 2014

TZK Precision v_{μ} Disappearance Measurement

Rencontres de Moriond, March 17, 2014

Rencontres de Moriond, March 17, 2014

TZK Joint $v_{\mu} + v_e$ Analysis: Constraints on δ_{CP}

Likelihood ratio fit to both $v_{\mu} + v_{e}$ event samples

Accounting for correlations in the parameter space $(\theta_{23}, \theta_{13}, \delta_{CP}, \Delta m_{32}^2)$

Including constraint from reactor experiments Daya Bay, RENO, Double Chooz $sin^22\theta_{13} = 0.095 \pm 0.010$ (PDG 2013)

T2K hints toward $\delta_{CP} = -\pi/2$

T2K

Joint v_{μ} + v_e Bayesian Analysis

Markov Chain Monte Carlo (MCMC) with both T2K-SK $v_{\mu} + v_{e}$ and ND280 samples

Can easily marginalize over e.g. mass hierarchy (MH) →

And compare the probabilities for each MH and θ_{23} octant combination \rightarrow

(%)	NH	ІН	Sum	PR
sin²θ ₂₃ ≤ 0.5	18	8	26	
sin²θ ₂₃ > 0.5	50	24	74	
Sum	68	32		RY

Future Sensitivity Studies

- T2K is aiming for 7.8 × 10²¹ POT (current data at ~8%)
 - Future running likely to include significant anti-v fraction (under consideration)
- Sensitivity with T2K alone
- Enhancement with other experiments such as NOvA

- Results finalized for latest analyses with 6.57×10^{20} POT $- v_{\mu}$ disappearance: Leading precision on θ_{23} ! [arXiv:1403.1532] $- v_{\mu} \rightarrow v_{e}$ appearance observation! [PRL 112, 061802 (2014)]
- New T2K joint v_{μ} + v_{e} analysis presented today
 - Hints toward $\delta_{CP} \approx -\pi/2$ with reactor constraint:

Feldman-Cousins 90% CL Inclusion Intervals: NH: $\delta_{CP} \in [-1.18, 0.15]\pi$

IH: $\delta_{CP} \in [-0.91, -0.08]\pi$

PRELIMINARY

Bayesian 90% Credible Interval: MH Marginalized: $\delta_{CP} \in [-1.13, 0.14]\pi$

PRELIMINARY

- Upcoming prospects this year
 - Short anti-v run planned this spring
 - Increasing beam power and POT from current ~8% of total
 - Tighter constraints on oscillation parameter space

Rencontres de Moriond, March 17, 2014

The T2K Collaboration

~500 members (337 authors), 59 Institutes, 11 countries

TRIUMF U. Alberta U. B. Columbia U. Regina U. Toronto U. Victoria U. Winnipeg York U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany

U. Aachen

INFN, U. Roma INFN, U. Napoli INFN, U. Padova INFN, U. Bari

Japa

ICRR Kamioka ICRR RCCN Kavli-IPMU KEK Kobe U. Kyoto U. Miyagi U. Edu.

Okayama U. Osaka City U. Tokyo Metropolitan U. U. Tokyo

IFJ PAN, Cracow NJBC, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U.T. U. Wroclaw

INR

IFIC, Valencia U. A. Barcelona

Switzerland

JE.

U. Bern U. Geneva ETH Zurich

United Kingdom

Imperial C. London Queen Mary U. L. Lancaster U. Liverpool U. Oxford U. Sheffield U. STFC/Daresbury STFC/RAL Warwick U. Boston U. Colorado S. U. Duke U. Louisiana S. U. Stony Brook U. U. C. Irvine U. Colorado U. Pittsburgh U. Rochester U. Washington

Rencontres de Moriond, March 17, 2014

Patrick de Perio: T2K Neutrino Oscillation Results

19

APPENDIX

Constraints on δ_{CP} Exclusion

PRELIMINARY

Reactor	Hierarchy	$ \Delta m_{32}^2 (NH)$	$\sin^2 \theta_{23}$	$\sin^2 2\theta_{13}$	δ_{CP}	$N_{obs}^{1R\mu}$	$N_{exp}^{1R\mu}$	N^{1Re}_{obs}	N_{exp}^{1Re}	$\Delta(\chi^2)$
constraint		$ \Delta m^2_{13} (IH)$								
		$10^{-3} eV^2/c^4$								
NO	NH	2.512	0.524	0.162	1.909	120	119.915	28	27.999	0.01
NO	IH	2.488	0.523	0.187	1.005	120	119.948	28	27.998	-
YES	NH	2.509	0.527	0.0967	-1.554	120	120.383	28	25.870	-
YES	IH	2.481	0.533	0.0984	-1.556	120	121.204	28	23.571	0.864

Rencontres de Moriond, March 17, 2014

v_{μ} Disappearance Parameters

PRELIMINARY

Reactor	Hierarchy	$ \Delta m^2_{32} (NH)$	$\sin^2 \theta_{23}$	$\sin^2 2\theta_{13}$	δ_{CP}	$N_{obs}^{1R\mu}$	$N_{exp}^{1R\mu}$	N^{1Re}_{obs}	N_{exp}^{1Re}	$\Delta(\chi^2)$
constraint		$ \Delta m^2_{13} (IH)$								
		$10^{-3} eV^2/c^4$								
NO	NH	2.512	0.524	0.162	1.909	120	119.915	28	27.999	0.01
NO	IH	2.488	0.523	0.187	1.005	120	119.948	28	27.998	-
YES	NH	2.509	0.527	0.0967	-1.554	120	120.383	28	25.870	-
YES	IH	2.481	0.533	0.0984	-1.556	120	121.204	28	23.571	0.864

Rencontres de Moriond, March 17, 2014

MCMC Joint Analysis Results

• Constraints on v_{μ} disappearance parameters

T2K-Only Model Probabilities

(%)	NH	ІН	Sum	PRE
$\sin^2\theta_{23} \le 0.5$	16	20	36	
$\sin^2 \theta_{23} > 0.5$	29	35	64	
Sum	45	55		RY

With Reactor Constraint

(%)	NH	IH	Sum	PRE
$\sin^2\theta_{23} \le 0.5$	18	8	26	
$\sin^2 \theta_{23} > 0.5$	50	24	74	IINA
Sum	68	32		RY

TZ Constraints on δ_{CP} Exclusion Comparison

- δ_{CP} inclusion regions by:
 - Feldman-Cousins (FC)
 - Bayesian MCMC assuming prior probabilities
 - NH: P(NH) = 1
 - IH: P(IH) = 1
 - MH Marg.: P(NH) = P(IH) = 0.5

δ _{CP} (π)	90% FC CL Interval	
NH	[-1.18, 0.15]	
IH	[-0.91, -0.08]*	AAAA

*Assuming global minimum in NH

δ _{CP} (π)	90% Bayesian Credible Interval	
NH	[-1.16, 0.17]	PRE
IH	[-1.05, 0.06]	
MH Marg.	[-1.13, 0.14]	VARY

Joint Analysis Comparison

- T2K joint accelerator v_{μ} disappearance + v_e appearance
 - Fixing $\sin^2 2\theta_{13} = 0.095 \pm 0.01$ (PDG2013)
 - Constant $\Delta \chi^2$
- Super-K 3-flavor atmospheric v analysis
 - arXiv:1310.6677
 - Independent best fits for each mass hierarchy
 - Fixing $\sin^2 2\theta_{13} = 0.098$ (PDG2012)
- MINOS combined accelerator and atmospheric analysis
 - arXiv:1403:0867
 - Fixing $\sin^2 2\theta_{13} = 0.095 \pm 0.01$ (PDG2013)

- Interactions in FGD and particle ID in TPC
- Major background: photons from π^0 decays
- Fit CC0π, CC1π+CC Other and γ sideband

$\frac{\text{measured } v_e \text{ flux}}{\text{predicted } v_e \text{ flux}} = 1.06 \pm 0.06(\text{stat}) \pm 0.08(\text{syst})$

Intrinsic beam v_e background prediction is validated!

Rencontres de Moriond, March 17, 2014

TZK Results of v_{μ} Disappearance Analysis

Great improvement from the previous T2K result! T2K favors maximal disappearance

T2K T2K + NOvA Sensitivity for Resolving sin $\delta_{CP} \neq 0$

Assuming 5% (10%) normalization uncertainty on signal (background) Assuming true: $\sin^2 2\theta_{13}=0.1$, $\Delta m_{32}^2=2.4\times 10^{-3} \text{ eV}^2$, θ_{13} constrained by $\delta(\sin^2 2\theta_{13})=0.005$

Rencontres de Moriond, March 17, 2014

T2K + NOvA Sensitivity to Mass Hierarchy

Both T2K/NOvA -> full POT (50% POT v + 50% POT anti-v) Shown in [NH] case.

Red: T2K alone, Blue: NOvA alone, Black: T2K + NOvA

Assuming true: $\sin^2 2\theta_{13} = 0.1$, $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, θ_{13} constrained by $\delta(\sin^2 2\theta_{13}) = 0.005$

TZK v_{μ} Disappearance Systematics Summary

• After ND280 constraint

ND280 Tracker Analysis

- Separate the CC sample into three subsamples:
 - CCO π : **no pions** in the final state

Number of entrie

800 700

200

- CC1π⁺: exactly **1**π⁺ in the final state
- CCother: >1 π⁺ OR >0 π⁻ OR
 >0 tagged photons

Data from T2K Runs 1-4: 5.9x10²⁰ protons on target

Selection	Number of Events
СС0π	17369
CC1π	4047
CC Other	4173
CC Inclusive	25589

Data are binned in two dimensions: muon momentum (p) and angle (cos θ)

Rencontres de Moriond, March 17, 2014

Solution of the second	Vumper of cuttics	350 300 250 250 100 50 0 0 0 0 0 2 0.2 0.4 0.6 $CC1\pi^+$ θ_{μ}	CC-0π CC-0π CC-0π CC-0π CC-0π BKG External Other 0.8 1 1.2 1.4	θ_{μ}
	CC0π purities	CC1π purities	CCother purities	
СС0π	72.6%	6.4%	5.8%	
CC1π	8.6%	49.4%	7.8%	
CCother	11.4%	31%	73.8%	
Bkg(NC+anti-v)	2.3%	6.8%	8.7%	
Out FGD1 FV	5.1%	6.5%	3.9%	

ND280 Systematic Errors

- Many sources of systematic error have been evaluated for the ND280 constraint
 - All errors are assigned using data control samples

Rencontres de Moriond, March 17, 2014

ND280 Fit Results

Strong reduction in uncertainties, especially through flux/xsec anticorrelation

Parameter	Prior to ND280 Constraint	After ND280 Constraint
M _A ^{QE} (GeV)	1.21 ± 0.45	1.22 ± 0.07
CCQE Norm.	1.00 ± 0.11	0.96 ± 0.08
M _A ^{RES} (GeV)	1.41 ± 0.22	0.96 ± 0.06
CCIπ Norm.	1.15 ± 0.32	1.22 ± 0.16

CC 0π Sample

CC $1\pi^+$ Sample

CC Other Sample

MC NEUT nomina

MC Post-fit

Data

5000

Rencontres de Moriond, March 17, 2014

SK ν_e Appearance Event Selection

TZK SK v_{μ} Disappearance Event Selection

$\underline{v_{\mu}}$ Selection Cuts

- Veto hits < 16
- Fid. Vol. = 2 m
- Single ring

- muon-like

- $p_{\mu} > 200 \text{ MeV/c}$
- 0 or 1 Michel e^{\pm}

Predicted Number of Events

 $sin^{2}2\theta_{13}$ = 0.1, $sin^{2}2\theta_{23}$ = 1, $\Delta m_{32}{}^{2}$ = 2.4×10^{-3} eV^{2}, NH, $\delta_{CP}{}$ =0

v _e Selection	MC Expectation
v_e CC Signal	17.32
v_e + anti- v_e CC	3.24
NC	0.96
v_{μ} + anti- v_{μ} CC	0.07
Total	21.59

v _µ Selection	MC Expectation
v_{μ} + anti- v_{μ} CCQE	77.93
v_{μ} + anti- v_{μ} CCnQE	40.78
NC	6.78
v_e + anti- v_e CC	0.35
Total	125.85

ν_{μ} MC Components

