

Constraining the CKM Angle y at LHCb

Laurence Carson, University of Edinburgh on behalf of the LHCb Collaboration Rencontres de Moriond EW 2014

γ in Tree-Level *B* Decays

- γ is the least well-constrained angle of the CKM triangle.
- Fits in summer 2012 (before the inclusion of LHCb data) gave: $\gamma = 66\pm 12^{\circ}$ (CKMFitter), $\gamma = 76\pm 10^{\circ}$ (UTFit)
- Measurements of γ from B decays mediated only by tree-level transitions provide an "standard candle" for the Standard Model.
- This can be compared with γ values from B decays involving loop-level transitions

- For example $B^{0}_{(s)} \rightarrow hh'$ decays

 Significant difference between these would indicate New Physics contribution to the loop process.

Menu of Results

- LHCb gamma combination from time-independent methods, using $B^+ \rightarrow D^0 K^+$ and $B^+ \rightarrow D^0 \pi^+$ (Phys. Lett. **B 726** (2013) 151), and updated preliminary combination using $B^+ \rightarrow D^0 K^+$ only (LHCb-CONF-2013-006)
- Time-independent γ measurement with 3/fb, using $B^+ \rightarrow D^0 K^+$ and $B^+ \rightarrow D^0 \pi^+$ with $D^0 \rightarrow K_S K \pi$ (LHCb-PAPER-2013-068, submitted to Phys. Lett. **B**)
- First observation of $B_s \rightarrow D^0 \varphi$ (Phys. Lett. **B 727** (2013) 403)
- Studies of beauty baryon decays to D⁰ph and Λ_ch (Phys. Rev. D 89 (2014) 032001)
- Studies of beauty baryon decays to pairs of charm hadrons (LHCb-PAPER-2014-002, submitted to Phys. Rev. Lett.)

The LHCb Experiment

- Forward arm spectrometer, optimised for study of *B* and *D* decays.
- Collected 1/fb of data at $E_{CM} = 7$ TeV in 2011 and 2/fb at 8 TeV in 2012

Time-Integrated Methods

- Sensitivity to γ from interference between $b \rightarrow c$ and $b \rightarrow u$ transitions at tree level, when D final state is accessible to both D^0 and \overline{D}^0
- Aside from γ , have hadronic unknowns $r_{B(D)}$, $\delta_{B(D)}$, where ratio of suppressed to favoured B(D) decay amplitudes is $r_B e^{i(\delta_B \gamma)} (r_D e^{i\delta_D})$
- Method to extract these hadronic unknowns (and γ) depends on the *D* final state
- Three main methods:

 GLW: D→CP-eigenstate, e.g. ππ, KK (Phys. Lett. B 253 (1991) 483, Phys. Lett. B 265 (1991) 172)

В

- ADS: D→ quasi-flavour-specific state, e.g. Kπ, Kπππ (Phys. Rev. Lett. 78 (1997) 257, Phys. Rev. D 63 (2001) 036005)
- GGSZ: D→ self-conjugate 3-body final state, e.g. K_sππ, K_sKK (Phys. Rev. D 68 (2003) 054018, Phys. Rev. D 70 (2004) 072003) 5

Gamma Combination

- The published LHCb combination uses analyses of $B \rightarrow Dh$ with:
 - $D \rightarrow K\pi$, KK or $\pi\pi$ using 1/fb (Phys. Lett. **B 712** (2012) 203),
 - D $\rightarrow K\pi\pi\pi$ using 1/fb (Phys. Lett. **B 723** (2012)) 44),
 - − $D \rightarrow K_s K K$ or $K_s \pi \pi$ using 1/fb (Phys. Lett. **B 718** (2012) 43),
 - Plus CLEO data on $D \rightarrow K \pi \pi \pi$ strong phase (Phys. Rev. **D 80** (2009) 031105)
- The experimental likelihoods are combined as $\mathcal{L}(\vec{\alpha}) = \prod_{i} f_i(\vec{A}_i^{\text{obs}} | \vec{A}_i(\vec{\alpha}_i))$, where A are the experimental observables (R_{CP}, x_+, etc) and α are the physics parameters (γ, r_B , etc).
- Confidence intervals are rescaled, to account for undercoverage and neglected¹ correlations between systematics.
- The effects of D⁰-D
 ⁰ mixing, and of possible CPV in the D decays, are taken into account.
- 68% CL confidence interval using DK and D π is:

Gamma Combination

- There is also a more recent, preliminary LHCb combination.
- This uses analyses of $B \rightarrow DK$ from the same analyses as the published combination, adding the information from an updated analysis with $D \rightarrow K_s KK$ or $K_s \pi \pi$ using the 3/fb dataset (LHCb-CONF-2013-004).
- Preliminary result is γ = 67±12°

These results lead to updated CKM fits:

 $\gamma = 68.0^{+8.0}_{-8.5}$ ° (CKMFitter, FPCP 2013), $\gamma = 70.1 \pm 7.1$ ° (UTFit, EPS 2013).

$\overset{\text{HCb}}{\longrightarrow} \text{Observables for } B^+ \rightarrow D^0 (\rightarrow K_S K \pi) h^+$

- This is the first ADS-like analysis to use Singly-Cabibbo-Suppressed (SCS) modes. Label final states as OS or SS comparing K[±] with B[±]
- Analysing three-body *D* final state requires knowledge of how the average interference amplitude ($\kappa_{\kappa_S \kappa \pi}$) and strong phase difference ($\delta_{\kappa_S \kappa \pi}$) vary across the *D* Dalitz plot
 - This is taken from a CLEO-c measurement, Phys. Rev. D 85 (2012) 092016

(b)

 $m^2 (K_s^0 K) [GeV^2/c^4]$

8

 n^2 (K⁰

0.5

LHCb

15

- Decay rates for $B^+ \rightarrow D^0 K^+$ are: $\Gamma_{SS, DK}^{\pm} = z [1 + r_B^2 r_D^2 + 2r_B r_D \kappa_{K_S^0 K \pi} \cos(\delta_B \pm \gamma - \delta_{K_S^0 K \pi}))$ $\Gamma_{OS, DK}^{\pm} = z [r_B^2 + r_D^2 + 2r_B r_D \kappa_{K_S^0 K \pi} \cos(\delta_B \pm \gamma + \delta_{K_S^0 K \pi}))$
- Measure yield ratios (e.g. $\mathcal{R}_{DK/D\pi, SS}$) and charge asymmetries (e.g. $\mathcal{A}_{SS,DK}$) between the OS and SS samples, and between *DK* and $D\pi$ final states.
- Analysis is done across whole Dalitz plane, and $\frac{t_{1}}{1}$ in a restricted region around the $K^{*\pm}$ resonance, where the coherence factor $\kappa_{K_{\varsigma}K\pi}$ is higher (≈1.0 vs ≈0.7).

Whole Dalitz plot

K^{*±} region

- Time-dependent analysis of the $B_s \rightarrow \overline{D}^0 \varphi$ decay can measure γ and φ_s (Phys. Lett. **B 253** (1991) 483).
- Using the now-known sign of ΔΓ_s, this determination can be made unambiguous (Phys. Rev. **D 85** (2012) 114015).
- A time-*in*dependent analysis can also measure γ, provided enough D⁰ final states are included (Phys. Rev. D 69 (2004) 113003, Phys. Lett. B 649 (2007) 61). This has advantages for LHCb, as it means flavour-tagging is not required.

• First step is to make the first observation of the decay, using the Cabibbo-favoured $\overline{D}^0 \rightarrow K^+ \pi^-$ decay mode.

Observation of $B_{s} \rightarrow D^{0} \varphi$

- LHCb searched for $B_s \rightarrow \overline{D}{}^0 \varphi$ with a blind analysis of 1/fb of data.
- First observation of $B_s \rightarrow \overline{D}^0 \varphi$ is made, with significance of 6.5 σ .

• Branching fraction (\mathscr{B}) is measured relative to the $B_d \rightarrow \overline{D}^0 K^{*0}$ decay. Also improve the measurement of $\mathscr{B}(B_s \rightarrow \overline{D}^0 \overline{K}^{*0})$ relative to $B_d \rightarrow \overline{D}^0 K^{*0}$:

 $\mathcal{B}(B_s^0 \to \overline{D}{}^0 \phi) = \left[2.3 \pm 0.4 \text{ (stat)} \pm 0.2 \text{ (syst)} \pm 0.2 (f_s/f_d) \pm 0.3 \left(\mathcal{B}(B^0 \to \overline{D}{}^0 K^{*0})\right)\right] \times 10^{-5}, \\ \mathcal{B}(B_s^0 \to \overline{D}{}^0 \overline{K}{}^{*0}) = \left[3.3 \pm 0.3 \text{ (stat)} \pm 0.1 \text{ (syst)} \pm 0.3 (f_s/f_d) \pm 0.5 \left(\mathcal{B}(B^0 \to \overline{D}{}^0 K^{*0})\right)\right] \times 10^{-4}.$

• With more data, can add more D⁰ final states, such as KK, $\pi\pi$, $K_s\pi\pi$, ...

Baryon Decays to D⁰ph, Λ_ch

- Beauty baryon sector remains largely unexplored.
- Decays such as $\Lambda_b \rightarrow D^0 \Lambda$ and $\Lambda_b \rightarrow D^0 p K^-$ can be used to measure γ (Z. Phys. C 56 (1992) 129, Mod. Phys. Lett. A 14 (1999), Phys. Rev. D 65 (2002) 073029)
- LHCb has studied beauty baryon decays to D⁰ph⁻ and Λ_ch⁻ final states, using 1/fb of data.
- The Caibibbo-favoured final states $D^0 \rightarrow K^- \pi^+$ and $\Lambda_c \rightarrow p K^- \pi^+$ are used.
- Common $pK^{-}\pi^{+}h$ final state reduces systematic uncertainties.

Baryon Decays to D^0ph , Λ_ch

Tighter selection (with BDT) used to make the first observations of $\Lambda_h \rightarrow D^0 p K^-$ (9.0 σ) and $\Xi_h \rightarrow D^0 p K^-$ (5.9 σ), and measure:

 $\frac{\mathcal{B}(\Lambda_b^0 \to D^0 p K^-)}{\mathcal{B}(\Lambda_b^0 \to D^0 p \pi^-)} = 0.073 \pm 0.008^{+0.005}_{-0.006},$ $\frac{f_{\Xi_{b}^{0}} \times \mathcal{B}(\Xi_{b}^{0} \to D^{0} p K^{-})}{f_{\Lambda_{b}^{0}} \times \mathcal{B}(\Lambda_{b}^{0} \to D^{0} p K^{-})} = 0.44 \pm 0.09 \pm 0.06$

The $D^0 p K^-$ spectrum can also be used to measure the mass difference:

measure the mass difference: $m_{\Xi_b^0} - m_{\Lambda_b^0} = 174.8 \pm 2.4 \pm 0.5 \text{ MeV}/c^2$ (Source of the second modelling in mass fit) Second modelling in mass fit) Combining with the LHCb measurement of $m_{\Lambda_b^0}$ $m_{\Xi_{h}^{0}} - m_{\Lambda_{h}^{0}} = 174.8 \pm 2.4 \pm 0.5 \text{ MeV}/c^{2}$

(Systematic is dominated by background modelling in mass fit)

using $\Lambda_h \rightarrow J/\psi \Lambda$ (PRL 110 (2013) 182001) gives:

 $m_{\Xi^0} = 5794.3 \pm 2.4 \pm 0.7 \text{ MeV}/c^2$ Most precise to date!

Record Baryon Decays to Two Charm Hadrons

- Another showcase for LHCb's capabilities with beauty baryons is the analysis of their decays to pairs of charm hadrons, using 3/fb.
- Events are selected using a BDT trained on signal decays to the relevant single charm hadron: $B_d \rightarrow D^- \pi^+$, $B_s \rightarrow D_s^- \pi^+$ or $\Lambda_b \rightarrow \Lambda_c \pi^-$.
- Clear first observations are made of the decays $\Lambda_b \rightarrow \Lambda_c D_s^-$ (CF) and $\Lambda_b \rightarrow \Lambda_c D^-$ (SCS), with: $\frac{\mathcal{B}(\Lambda_b^0 \rightarrow \Lambda_c^+ D^-)}{\mathcal{B}(\Lambda_b^0 \rightarrow \Lambda_c^+ D^-)} = 0.042 \pm 0.003 \text{ (stat)} \pm 0.003 \text{ (syst)}.$

• The Λ_b branching fractions can be normalised to $\overline{B}_d \rightarrow D^+ D_s^-$, but the fragmentation fraction ratio f_{Λ_b}/f_d is known to depend on the p_T of the b-hadron (LHCb, Phys. Rev. **D 85** (2012) 032008)... 14

CHCP Baryon Decays to Two Charm Hadrons

• Adopting the p_{τ} -dependence of f_{Λ_b}/f_d measured by LHCb using $B_d \rightarrow D^- \pi^+$ and $\Lambda_b \rightarrow \Lambda_c \pi^-$ (LHCb-PAPER-2012-004, in preparation), the double ratio is measured:

 $\left[\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)}{\mathcal{B}(\overline{B}{}^0 \to D^+ D_s^-)}\right] / \left[\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)}{\mathcal{B}(\overline{B}{}^0 \to D^+ \pi^-)}\right] = 0.96 \pm 0.02 \,(\text{stat}) \pm 0.06 \,(\text{syst}).$

• In addition, the modes $B_{\{d,s\}} \rightarrow \Lambda_c^+ \Lambda_c^-$ are searched for, and no significant signal is found. The following 95% C.L. limits are set: $\frac{\mathcal{B}(\overline{B}^0 \rightarrow \Lambda_c^+ \Lambda_c^-)}{\mathcal{B}(\overline{B}^0 \rightarrow D^+ D_s^-)} < 0.0022, \quad \frac{\mathcal{B}(B_s^0 \rightarrow \Lambda_c^+ \Lambda_c^-)}{\mathcal{B}(B_s^0 \rightarrow D^+ D_s^-)} < 0.30$

- Finally, the very similar Q-values of the $\overline{B}_d \rightarrow D^+ D_s^-$ and $\Lambda_b \rightarrow \Lambda_c D_s^- \stackrel{P_{\tau}[MeV/c]}{\to}$ decays allows a precise measurement of the mass difference: $M(\Lambda_b^0) - M(\overline{B}^0) = 339.72 \pm 0.24 \text{ (stat)} \pm 0.18 \text{ (syst)} \text{ MeV}/c^2.$ $Dominant syst is due to <math>\tau(D^+) >> \tau(\Lambda_c)$
 - Using the World Average B_d mass gives the most precise result to date for the absolute Λ_b mass: $M(\Lambda_b^0) = 5619.30 \pm 0.34 \,\text{MeV}/c^2$ 15

Summary & Prospects

- Preliminary LHCb γ combination with $B^+ \rightarrow D^0 K^+$ decays, using various methods (ADS, GLW, GGSZ) gives $\gamma = 67\pm 12^\circ$, more precise than the B-factory measurements.
- At the moment, no one method dominates the sensitivity.
- Always looking to add new *B* decays, and new *D* final states
 - First constraints on γ with $B^+ \rightarrow D^0 (\rightarrow K_S K \pi) h^+$ just submitted to PLB
 - Promising new mode $B_s \rightarrow \overline{D}^0 \varphi$ now observed
- Wealth of measurements now being done with *b*-baryons, may throw up some interesting surprises.
- Stay tuned for more results in the future!
 - Many measurements are awaiting the inclusion of the 2.0/fb collected at 8 TeV in 2012

Backup

Gamma Combination

• CLEO-c result on $D \rightarrow K \pi \pi \pi$:

• Other parameters measured:

Helicity Structure for $B_s \rightarrow \overline{D}^0 \varphi$

- Distribution of the helicity angle for selected signal events shows that the B_s mass region is dominated by a vector resonance, as expected for a final state. In contrast in the B_d mass region is not.
- The B_d distribution supports what was seen in the LHCb paper on the discovery of the $B_d \rightarrow D^0 K^+ K^-$ decay, Phys. Rev. Lett. **109** (2012) 131801.
- The B_s distribution is reinforced by the m(KK) distribution in the B_s region: $\hat{J}_s = \frac{15}{15} \begin{bmatrix} 15 & 15 \\ LHCb & LHCb \end{bmatrix}$

Baryon Decays to
$$D^0ph$$
, Λ_ch

• The tighter selection is also applied to the $\Lambda_c h^-$ spectra, to clearly observe $\Lambda_b \rightarrow \Lambda_c K^-$, and find evidence for $\Xi_b \rightarrow \Lambda_c K^-$ (3.3 σ):

$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 0.0731 \pm 0.0016 \pm 0.0016,$$

$$\frac{\mathcal{B}(\Xi_b^0 \to \Lambda_c^+ K^-) \times \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)}{\mathcal{B}(\Xi_b^0 \to D^0 p K^-) \times \mathcal{B}(D^0 \to K^- \pi^+)} = 0.57 \pm 0.22 \pm 0.21$$

 $\Lambda_b \rightarrow D^0 ph^-$ Dalitz Plots

• The "two charm hadrons" analysis also makes the most precise measurement of $\mathscr{B}(B_s \rightarrow D^+ D_s^-)$:

 $\frac{\mathcal{B}(B_s^0 \to D^+ D_s^-)}{\mathcal{B}(\overline{B}{}^0 \to D^+ D_s^-)} = 0.038 \pm 0.004 \,(\text{stat}) \pm 0.003 \,(\text{syst}).$ $\mathcal{B}(B_s^0 \to D^+ D_s^-) = (2.7 \pm 0.5) \times 10^{-4}$

