Planck 2013 cosmological results

- Introduction
- The Planck mission
- CMB temperature anisotropies analysis & constraints
- Adding more datasets
- Prospects

ъ

프 🖌 🛪 프 🕨

Cosmology

- RG based condordance <u>ACDM</u> model : ~ 7 parameters
- Inflation paradigm
 ⇒ origin of anisotropies
- CMB ⇒ "snapshot" of density field ~ 300000 y after BB

→ E → < E →</p>

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cosmological parameters

"vanilla" \Lambda CDM (Planck alone + low \ell WMAP polar) :

- primordial spectrum : normalisation A_s , spectral index n_s ($P_k = A_s(k/k_0)^{n_s-1}$)
- present expansion rate H_0 ($h = (H_0/100 km/s/Mpc)$)
- energy densities : $\Omega_b h^2$, $\Omega_{CDM} h^2$
- reionisation optical depth au (low l polarization)

Assumptions (addressed using extensions, including more data sets) :

- flat universe
- light neutrinos : $\sum M_{\nu} = 0.06 eV$
- 3 families of ν ($N_{eff} = 3.05$)
- no tensor modes ($r = A_t/A_s = 0$)

NB : Results depend on fitted model + dataset(s) (check their compatibility !)

O. Perdereau 🍪 🕬

The Planck mission

ESA mission launched on 15/05/2009 (jointly with Herschell) orbit around L2 (1.5Mkm) quaranteed duration : 14 months (2 surveys)

extended till mid January 2012 (HFI) / mid 2013 (LFI)

- Telescope (1.5m) danish consortium
- LFI (HEMTs 30-70GHz, 20 K, 15-30 arcmin beams) - consortium coordinated by Bologna Univ. (+US, Sp, It,...)
- HFI (bolometers 100-857 GHz, 100) mK. 10-5 arcmin beam) coordinated by IAS (PI J.L. Puget, IAS); institutes from Ca, CH, Ge, Fr, Irl, It, NL, Sp, US, UK,...

Cost : ~ 600Meuros $(HFI \sim 150 Meuros)$

The Planck mission

ESA mission launched on 15/05/2009 (jointly with Herschell) orbit around L2 (1.5Mkm) guaranteed duration : 14 months (2 surveys)

extended till mid January 2012 (HFI) / mid 2013 (LFI)

- Telescope (1.5m) danish consortium
- LFI (HEMTs 30-70GHz, 20 K, 15-30 arcmin beams) - consortium coordinated by Bologna Univ. (+US, Sp, It,...)
- B HFI (bolometers 100-857 GHz, 100) mK. 10-5 arcmin beam) coordinated by IAS (PI J.L. Puget, IAS); institutes from Ca, CH, Ge, Fr, Irl, It, NL, Sp, US, UK,...

Cost : ~ 600Meuros $(HFI \sim 150 Meuros)$

イロト イタト イヨト イヨト

Planck at L2

 $\sim 8x8$ degree field

Continuous observations (7 months \rightarrow all sky) redundancies on different timescales (systematics) Calibration accuracies .5% \rightarrow 10%, beams ~ 5 \rightarrow 30 arcmin

A B N A B N

The sky as seen by Planck

Planck physics

- primary objective(s) : CMB anisotropies (T and polarization) photon noise limited for T and E modes
- many astrophysical components observed together with CMB :
 - Solar system : planets, asteroids, zodiacal light ...
 - Galactic : dust, synchrotron, free-free
 - extragalactic : clusters (SZ), CIB, radio sources,...

Planck 2013

- different frequency dependence ⇒ component separation
- rich physics program

O. Perdereau

• first full sky maps at 200-800 GHz

Moriond EW 2014 8 / 28

Planck 2013 CMB temperature anisotropies map

4 methods compared in : Planck 2013 results. XII. Component separation

Planck 2013

イロト イロト イヨト イヨト

Cosmological parameter analysis in a nutshell

• Spherical harmonic decomposition ($l \sim 1/angle$) :

$$\frac{\delta T}{T}(\theta,\phi) = \sum_{\ell} \sum_{m} a_{\ell m} Y_{\ell m}(\theta,\phi)$$

• general assumption $\Rightarrow a_{\ell m}$ are random variables (gaussian p.d.f.); $\langle a_{\ell m} \rangle_m = 0$; all information contained in their variance

$$C_{\ell} = \frac{1}{2\ell+1} \sum_{m} a_{\ell m} a_{\ell m}^{\dagger}$$

predicted by our model

- only one realization is observable → intrinsic dispersion wrt model ("cosmic variance")
- Planck 2013 analysis : 100, 143 and 217 GHz maps cross spectra (suppression of instrumental noise) with masks (⇒ low foregrounds contamination) (high *l*); CMB map ML (low *l*)
- fit cosmological parameters using a likelihood function (accounting for CMB, residual foregrounds, instrumental nuisance parameters - ~ 20 parameters)

イロト イポト イヨト イヨト 二日

CMB TT power spectrum (Planck 2013)

output of Planck likelihood - foregrounds subtracted

Hybrid method : map based ML (low l) / pseudo-spectra (high l) of masked raw maps

O. Perdereau 🍪

planck

Planck 2013

Moriond EW 2014 11 / 28

Internal checks

+ split data in independent sets (many ways) ⇒ noise estimation, systematic checks

イロン イボン イヨン イヨン

CMB lensing by Large Scale Structures

LSS distorsion of the CMB photons' paths

 \rightarrow small "smearing" of the C_ℓ spectra + distorsion of the CMB image

CMB lensing by Large Scale Structures

LSS distorsion of the CMB photons' paths

 \rightarrow small "smearing" of the C_ℓ spectra + distorsion of the CMB image

Mapping the lensing structures

Analysis of CMB anisotropies 4 points statistics \Rightarrow Power spectrum of the deflexion field (integrated information on LSS (@ $z \approx 2.5$)

used in cosmological parameter fits together with C_{ℓ}

High resolution CMB observations : ACT and SPT

ACT (Sievers et al arXiv :1301.0824) SPT (Hou et al., arXiv :1212.6267)

WMAP

Planck 2013

★ E → ★ E →

Extending the l coverage (needed for e.g. n_s)

ACT/SPT \Rightarrow constraint high l foregrounds (point sources, CIB, SZ,...) \Rightarrow (\Rightarrow)

planck

O. Perdereau

Planck 2013

Moriond EW 2014 16 / 28

CMB only parameter fits

Planck 2013 results. XVI. Cosmological parameters

Baryon Acoustic Oscillations (BAO)

- At recombination one observes a preferred size of density anisotropies
- Standard ruler" (large enough to stay in linear regime)
- first observation in SDSS-II DR 7 using LRG (Eisenstein et al 2005)
- several other groups/targets since (6dF, WiggleZ, BOSS / SDSS-III DR9/10/11)
- measurements at various epochs (or redshifts z) \Rightarrow $D_A(z)$, H(z) (expansion rate vs z)

イロン イボン イヨン イヨン

Comparison with CMB best fit

Planck 2013 results. XVI. Cosmological parameters

 \Rightarrow BAO results agree with Planck (CMB) best fit cosmology

O. Perdereau 🏼 🍪 planck

Planck 2013

Moriond EW 2014 19 / 28

SNIa vs CMB cosmology

~ 2 sigma tension between Planck 2013 (gray band $\pm 2\sigma$) and SNLS3/SDSS results (Conley et al 2011) Union 2.1 (Suzuki et al 2011) best fit closer but more dispersion \Rightarrow use only BAO in current fits

Improvements on SNLS/SDSS analysis (Betoule et al 2014) \Rightarrow to be revisited in 2014?

Planck 2013 results. XVI. Cosmological parameters

O. Perdereau 👶

Cosmological constraints (Planck 2013 + BAO)

- The 6 parameter ACDM is a good fit !
- lower H_0 , larger Ω_m
- Flat universe : $100\Omega_{K} = -0.1 \pm 0.6$ (95% c.l.)
- N_{eff} = 3.30 ± 0.54 (95% c.l.); Σm_ν < 0.23 (95% c.l.)
- dark energy : $w = -1.13 \pm 0.24$ (95% c.l.)
- good agreement with BBN
- no evidence for primordial non gaussianities
- large angular scale ~ 2σ "anomaly"
- $n_s = 0.96$ at more than 5σ , no evidence for running, limit on tensor modes

Planck 2013 results. XVI. (parameters) & XXII. (inflation constraints) - and others !

Conclusions and prospects

- Planck launched on May 14th 2009 after a long (17y) preparation
- quasi perfect data-taking from L2 (ended Aug. 14th 2013)
- 29 papers (O(1000) pages) issued on 2013 March 21st on cosmology results (from T, nominal mission i.e. 14 months)
- "vanilla" \(\Lambda CDM\) model fully supported + parameters precisely measured
- uncertainties dominated by 'cosmic variance' and systematics
- Full dataset + polarization release (Oct. 2014 TBC) : high *l* looks great, low *l* more challenging, new measurement of τ? r??
- more info :

http://www.rssd.esa.int/index.php?project=Planck, www.planck.fr

O. Perdereau 🍪 planck

Back-ups

æ -

Low l anomaly?

O(10%) deficit of measurements wrt best fit (O(2 σ)) already seen by WMAP no effect on parameter fit

O. Perdereau 👶

Comparison with WMAP : power spectra

~ 2.5% normalisation difference (under study by both groups) no influence on cosmological parameters but A_s A_s A_s A_s A_s A_s A_s

O. Perdereau 🏼 🍪 🛤

Planck 2013

Moriond EW 2014 26 / 28

Polarization teasers

Cold and hot spots stacking (data and sims)

curves = expectation from fit on T only ACDM model

O. Perdereau 🍪 planck

Planck 2013

CMB maps : Planck vs WMAP

Moriond EW 2014 28/28