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2 Introduction. General Outlook

In this Conference we had more than 40 theoretical talks, some reviewing a subject and some
presenting original contributions. I cannot possibly do justice to all of them in such a short time
and I will use them as guide in order to present my summary. The list of the subjects is given
above and, as I go on, I will mention the particular contributions. I apologise for the numerous
omissions.

Let me start with the second topic, namely the General Outlook which can be stated in just
one sentence:

The Standard Model is complete!



In fact, we should not call it any more ”The Standard Model”, but The Standard Theory.

The Standard Theory has been enormously successful! It is a gauge theory of the group
SU(3) × SU(2) × U(1) spontaneously broken to SU(3) × U(1)em. It has four fundamental
coupling constants, i.e. the three gauge couplings g, g′ and g3, as well as the scalar coupling
constant λ, in addition to the Yukawa couplings of the scalar with the fermions which give rise to
the fermion masses. All these parameters have now been measured experimentally, the last one
being determined by the measurement of the scalar mass. Some are very small, ex. the electron
Yukawa coupling constanta, and others are quite appreciable, like the top-scalar coupling. It is
remarkable however, that they are all smaller than one and perturbation theory seems to be
applicable. We shall come back to this point presently.

Let us first ask the following question: are all these parameters truly independent, in other
words, can we reduce their number by imposing some relation among them? An example
of such a relation is λ = F (g), the scalar coupling being a function of the gauge coupling
constants. There have been very interesting attempts to impose such a relation of the form
m2
Z/m

2
S = (g2 + g′2)/8λ = C2 with C some fixed constant. This in turn implies a relation

between the scalar and the gauge boson masses. The renormalisation group equations allow us
to address this question. In the tree approximation we have:
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So, the question is: is there any renormalisation scheme, no matter how complicated in
practice, in which the relation (1) does not receive an infinite counterterm? Such a relation
will correspond to a zero of the β-function for the combination of the coupling constants which
appears at the r.h.s. of (1). The β-functions of the Standard Model, with or without fermions,
have been computed at one and two loops. With three coupling constants we can form the two
ratios:
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Notice that λ must be positive, otherwise the classical Higgs potential is unbounded from
below. This implies that both η’s are positive. If we leave out the fermions, the corresponding
β-functions are given by:
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Using (3) we can investigate any ratio of the Higgs and the gauge boson masses. For the
combination (1) we obtain:
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aIf the neutrinos acquire their masses through the same Yukawa mechanism as the other fermions, the corre-
sponding coupling constants must be really tiny. This point has been discussed in this Conference and we shall
mention it later on.



It is easy to check that the quadratic form in the r.h.s. of (4) never vanishes for real and
positive z and ρ. This implies that the relation (1) will be violated in one loop, no matter which
renormalisation scheme one is using.

Similarly, we can check whether the ratio mW /mφ can provide a stable fixed point by looking
for possible zeros of the β-function of η2, eq. (3). The result is again negative. It is easy to
show that adding the fermions does not produce any fixed points either and this applies to any
other combination of the parameters of the theory. This allows us to conclude that:

The Standard Theory is irreducible under renormalisation!

It has all necessary coupling terms and nothing more. It is the extreme totalitarian system:
everything which is not forbidden is compulsory.

2.1 The perturbation expansion.

The Standard Model is a renormalisable quantum field theory. Through the Feynman rules
we obtain well defined expressions for any correlation function to any order of perturbation.
Depending on the numerical value of the various coupling constants, we expect to find three
different regimes: (i) the strong coupling regime, in which g ≥ 1 for at least one coupling
constant, (ii) the weak coupling regime, in which g << 1 for all coupling constants and (iii) a
”gray area” in between. We expect perturbation theory to be reliable in (ii), we have developed
a strong coupling approach based on lattice simulations for (i), and we are in the dark for (iii). In
fact, at present energies the Standard Model appears to be in the gray area with some coupling
constants rather large, although still smaller than one. Why does perturbation theory work so
well? We can show the problem by a hand-waving argument. Let An be the nth order term in
the perturbation expansion of some quantity A. We expect to have:

An ∼ αn(2n− 1)!! (5)

where α is a typical coupling constant α = g2/4π and the double factorial comes from the
estimated number of diagrams at the αn ∼ g2n order. In writing (5) we have made the following
assumptions: (i) all diagrams at a given order give positive contributions and, (ii) the value of
each diagram is roughly equal to one. Although neither one is correct for a general theory, we
still expect the estimation to give the right order of magnitude. The perturbation theory breaks
down when we have:

An ∼ An+1 ⇒ 2n+ 1 ∼ α−1 (6)

This sounds fine for QED with α ∼1/137, but what about QCD at Q2 ∼ 10GeV 2? We
have no rigorous answer to this question, but we believe we understand the structure of the
theory and we have developed powerful techniques to perform calculations which, although
still perturbative, go beyond the näıve Feynman diagram expansion. (For the details, stay in
Moriond next week.). The conclusion is that the validity of (improved) perturbation theory
seems to extend deep inside the gray area.

2.2 The strong coupling regime.

In the strong coupling regime we use a lattice approximation. It is a direct numerical computa-
tion of the functional integral and the formulation is interesting in its own right.

Let us consider, for simplicity, a lattice with hypercubic symmetry. The space-time point
xµ is replaced by:

xµ → nµa (7)



where a is a constant length, (the lattice spacing), and nµ is a d-dimensional vector with compo-
nents nµ = (n1, n2, ..., nd) which take integer values 0 ≤ nµ ≤ Nµ. Nµ is the number of points of
our lattice in the direction µ. The total number of points, i.e. the volume of the system, is given
by V ∼

∏d
µ=1Nµ. The presence of a introduces an ultraviolet, or short distance, cut-off because

all momenta are bounded from above by 2π/a. The presence of Nµ introduces an infrared, or
large distance cut-off because the momenta are also bounded from below by 2π/Na, where N
is the maximum of Nµ. The infinite volume continuum space is recovered at the double limit
a→ 0 and Nµ →∞.

The dictionary between quantities defined in the continuum and the corresponding ones on
the lattice is easy to establish (we take the lattice spacing a equal to one):

1. A field Ψ(x) ⇒ Ψn

2. A local term such as Ψ̄(x)Ψ(x) ⇒ Ψ̄nΨn

3. A derivative ∂µΨ(x) ⇒ (Ψn −Ψn+µ)

where n + µ should be understood as a unit vector joining the point n with its nearest
neighbour in the direction µ.

4. The kinetic energy termb Ψ̄(x)∂µΨ(x) ⇒ Ψ̄nΨn − Ψ̄nΨn+µ

5. A gauge transformation Ψ(x)→ eiΘ(x)Ψ(x) ⇒ Ψn → eiΘnΨn

All local terms of the form Ψ̄nΨn remain invariant but the part of the kinetic energy which
couples fields at neighbouring points does not.

6. The kinetic energy Ψ̄nΨn+µ → Ψ̄ne
−iΘneiΘn+µΨn+µ

which shows that we recover the problem we had with the derivative operator in the continuum.
In order to restore invariance we must introduce a new field which has indices n and n+ µ. We
denote it by Un,n+µ and we shall impose on it the constraint Un,n+µ = U−1

n+µ,n. Under a gauge
transformation, U transforms as:

Un,n+µ → eiΘnUn,n+µe
−iΘn+µ (8)

With the help of this gauge field we write the kinetic energy term with the covariant deriva-
tive on the lattice as:

Ψ̄n Un,n+µ Ψn+µ (9)

which is invariant under gauge transformations.
U is an element of the gauge group but we can show that, at the continuum limit and for an

infinitesimal transformation, it reproduces correctly Aµ, which belongs to the Lie algebra of the
group. Notice that, contrary to the field Ψ, U does not live on a single lattice point, but it has
two indices, n and n+µ, in other words it lives on the oriented link joining the two neighbouring
points. We see here that the mathematicians are right when they do not call the gauge field “a
field” but “a connection”.

In order to finish the story we want to obtain an expression for the kinetic energy of the
gauge field, the analogue of TrGµν(x)Gµν(x), on the lattice. As for the continuum, the guiding
principle is gauge invariance. Let us consider two points on the lattice n and m. We shall call
a path pn,m on the lattice a sequence of oriented links which join continuously the two points.
Consider next the product of the gauge fields U along all the links of the path pn,m:

P (p)(n,m) =
∏
p

Un,n+µ...Um−ν,m (10)

bWe write here the expression for spinor fields which contain only first order derivatives in the kinetic energy.
The extension to scalar fields with second order derivatives is obvious.



Using the transformation rule (8), we see that P (p)(n,m) transforms as:

P (p)(n,m)→ eiΘnP (p)(n,m)e−iΘm (11)

It follows that if we consider a closed path c = pn,n the quantity TrP (c) is gauge invariant.
The simplest closed path for a hypercubic lattice has four links and it is called plaquette. The
correct form of the Yang-Mills action on the lattice can be written in terms of the sum of TrP (c)

over all plaquettes.

On the lattice the functional integral becomes an ordinary multiple integral, in principle
computable numerically. However, there are still several problems which should be addressed,
both conceptual and technical:

1. Fermions. We just saw that the lattice provides for a cut-off which removes all divergences
and respects gauge invariance. Therefore, it must violate chiral symmetry, otherwise we
would have obtained a regularised theory with no axial anomaly. This is an old problem
known as the Nielsen-Ninomiya theorem. There are several ways to bypass it, the most
common one, introduced already by Ken Wilson, consisting of doubling all fermion species
on the lattice. One can show that it is possible to recover the usual theory with the physical
fermion content in the continuum limit. Alternative formulations, such as starting from a
five dimensional theory, also exist.

2. Computers do not know how to handle anti-commuting variables, so, integrating over
fermion fields is not straightforward. Fortunately, we never have to do it, because all
terms in the Standard Model Lagrangian are at most quadratic in the fermion fields. So,
the integration can be done analytically and we recover a determinant which depends on
the gauge fields.

3. Computing the determinant for every gauge field configuration is a time-consuming opera-
tion. For this reason most early lattice calculations assumed non-dynamical fermions, the
so-called quenched approximation. It is only recently, with the last generation of powerful
computing systems, that real dynamical fermions can be included.

4. Even today a realistic computation covering the entire energy scale of interest in QCD,
from the spontaneous breaking of chiral symmetry with real pions all the way to match
perturbative calculations, is beyond our reach. These phenomena can be studied only by
extrapolations. However, with the projected increase in computing power, such ”dream”
calculations can be expected for the next decade.

5. At present we have a good fit of hadron spectra with the exception of the very light pseudo
scalars which are sensitive to the spontaneous breaking of chiral symmetry. In addition,
the matrix elements describing the weak decays of heavy quarks are also quite reliably
estimated (see the talk by F. SanFilippo).

2.3 New Physics.

We have been told repeatedly that New Physics is around the corner.....but, for the moment, we
see no corner! There exist, however, good reasons to believe that new physics is indeed there,
except that the corner may be a bit further than what we thought.

The ST is a renormalisable Quantum Field Theory. As such, it gives perfectly well-defined
answers for every correlation function at any order in perturbation theory. Remember, however,
that parameters such as masses and coupling constants are not calculable. They are taken by
experiment. From the mathematical point of view any number is as good as any other but this
leaves some conceptual questions unanswered.



1. Hierarchy: Why all dimensionless numbers are not of order one. In particular, why there
seem to be widely separated mass scales. The problem is physical, not mathematical.

2. Naturalness, or Fine tuning: Why some choice of parameters may require fine tuning in
perturbation.

Both problems are aesthetic. If you are happy with very small, or very large, numbers, you
do not have to worry about them. We can show the problem using Wilson’s effective theory
approach.

Consider any 4-dim renormalisable theory. Integrate over all modes of the fields with energy
above a given scale M . M does not have to correspond to a physical scale. You obtain an
effective theory in terms of the light , i.e. lighter that M , modes. The general form of this
theory will be an infinite sum of terms of the form:

Leff =
∑
i

Ci(g,M)Oi (12)

where Oi form an infinite set of all local operators which are consistent with the symmetries of
the initial theory and Ci are c-number functions of the coupling constants and the scale M . If
the initial theory is renormalisable, the coefficient functions Ci can be computed in perturbation.
Notice that this expansion is valid irrespectively of whether the initial theory was ”fundamental”
or ”effective”. The dependence of the Ci’s on M can be deduced by dimensional analysis. If di is
the dimension of the operator Oi, the corresponding coefficient is proportional to M to the power
(4−di). We see that we obtain three kinds of terms. (i) Those with di > 4 have a negative power
of M and they become irrelevant for large M . (ii) Those with di = 4 are marginal operators
and their coefficients are M -independentc. Since the Standard Model is irreducible, all these
terms appear already in the original Lagrangian. (iii) Finally we have terms with di < 4 whose
coefficients have positive powers of M and become dominant for large M . The only dominant
operator in the Standard Model is the scalar mass term: m2

Sφ
2
S. It will grow as M2, unless, for

some reason, its coefficient vanishes. This will require the introduction of new physics and we
heard in this Conference several ways such a thing could happen.

3 What we have learned

I shall follow the topics, as they were presented in the Conference.

3.1 Heavy flavours

Many contributions by W. Altmannshofer, Ch. Bobeth, S. Descotes-Genon, M. Gorbahn, F.
Sala, F. SanFilippo, A. Tayduganov.

Heavy flavors present a rich and exciting phenomenology, but we have to admit that we do
not understand the underlying physics. It was I. Rabi who, after the identification of the muon,
almost seventy years ago, asked the question: ”who ordered that?” The question is still with
us extended to all quark and lepton flavours beyond the first family. Even if we forget about
neutrinos, their masses are spread over a wide range of more than five orders of magnitude
and this creates a naturalness problem which we do not understand. We try to turn it into
a blessing. For example, b-quarks present an interesting new source of CP violation and they
are the subject of both experimental and theoretical investigation. Rare decays may reveal the
presence of new physics.

cWe ignore in this discussion any logarithmic dependance on M .



3.2 Neutrinos

We had many reviews and contributions: R. Alonso, G. Altarelli ( general review), F. Capozzi, P.
Coloma, M. Drewes, A. Kartavtsev, F. Lyonnet, M. Maltoni (on sterile neutrinos), P. Schwaller,
Y. Wong

Neutrinos have provided the only experimental results which, quite probably, point already
to physics beyond the Standard Model. It is a data driven subject in which, for a change, the
theorists did not play the major role. There have been very few new ideas and most of them
provide an independent indication for the possible existence of a GUT-like scale.

A point which was emphasised in this Conference is that the presence of sterile neutrinos
will not help in the effort to remove the discrepancies and fit all the experimental results. Unless
something totally unexpected happens, some measurements should be revised.

From G. Altarelli’s review: So far no real illumination came from leptons to be combined
with the quark sector for a more complete theory of flavour

3.3 Astrophysics and Cosmology

We were presented with great new results in astrophysics and cosmology. Since they were
essentially experimental, I will mostly mention them very briefly

1. Planck: Beautiful measurements of CMB anisotropies in temperature and polarisation.

(See the theory talk by J. Hamann.)

2. Ice Cube: We enter the era of High Energy Neutrino Astronomy.

(See the theory talks by I. Saba, G. Sigl and I. Tamborra.)

3. BICEP2: First evidence for the B-mode in polarisation. The trace of primordial gravita-
tional waves?

Let me remind you here the well known fact that scattering on free electrons can produce
linearly polarised light. Let us choose the rest frame of the target electron and consider
a beam of photons incident along the z axis. The initial polarisation vectors ~εi lie on the
x − y plane. If we look at a scattered photon at large angles, say along the x axis, its
polarisation vector ~εf will lie on the y − z plane. Thompson’s classical formula tells us
that only the y component survives, i.e., even if the incident beam was unpolarised, the
scattered photon will be linearly polarised.

According to the Standard Cosmological Model, the Universe started very hot and dense
and it cools down as it expands. During this process it went through several phase tran-
sitions. When the temperature was above a few keV, matter consisted of a hot plasma
made out of electrons and protons with some light nuclei, mainly helium. Photons were
trapped in the plasma and were not free. As the temperature dropped electrons and nuclei
combined to form the first atoms. Matter became neutral and photons could travel freely
through space and can be observed today. They carry precious information regarding the
conditions that prevailed when they last interacted with free electrons, i.e. the moment
of recombination. According to the model, this happened at a time around 380000 years
after the big bang. Because of the expansion, the photon wave length has since been red-
shifted and today it is observed as a cosmic microwave background (CMB) radiation. It is
remarkably homogeneous and isotropic and this fact is best understood in the framework
of the so-called inflation model which postulates that, at very early times, of the order
of 10−33 seconds after the big bang, the Universe went through a state of exponentially
fast expansion. Thus, the present visible Universe results from a very small region of the
early Universe and the study of the CMB radiation brings to us the earliest information
of the world history. This information is of two kinds. First, we observe density and



temperature fluctuations of the order 10−5. They are at the origine of the formation of
the large structures we observe today. A second kind of information concerns the polarisa-
tion of the CMB photons. As we noticed already, scattering at 90 degrees of unpolarised
photons produces linear polarisation. However, if, in the electron rest frame, the incident
radiations along the z and the y axis have the same intensity, the polarisation of the pho-
tons scattered in the x direction, cancels. It follows that a net polarisation will reveal
the presence of anisotropies along perpendicular directions, i.e. quadrupole anisotropies,
at the moments just before the last scattering. It is assumed that inflation has washed
out any large anisotropies, so the polarisation is expected to be small. We can treat these
anisotropies as perturbations and make a multipole expansion in scalar, vector, tensor
etc. We can imagine various sources of such perturbations. In the inflation model scalar
perturbations come from density anisotropies, vector perturbations from the presence of
magnetic vortices in the plasma and tensor perturbations from the presence of gravita-
tional waves created during the set up of inflation. These perturbations are expected to
leave their imprint in the polarisation pattern of CMB radiation.

Like any vector field, a polarisation ~ε(~x) of the CMB radiation can be decomposed into
a pure gradient part and a pure curl part. They have different transformation properties
under parity: the first, called the E-mode, is a pure vector and the second, the B-mode,
a pseudo-vector. The scalar perturbations will contribute only to the E-mode because
we cannot make a pseudo-vector out of the derivatives of a scalar. The E-mode polarisa-
tion has been measured already and it is well correlated with the observed temperature
fluctuations. A B-mode can come only from vector or tensor perturbations. The first are
expected to be very small because inflation has presumably diluted any primordial vortices
in the plasma, so we are left with gravitational waves as the principal source of a B-mode.
Furthermore, their presence is a generic prediction of all inflation models. Therefore, it is
easy to understand the excitement caused by the BICEP2 results which were shown in this
Conference. They have the magnitude and the properties expected from inflation models.
At this moment this observation is still preliminary but, if it is confirmed by independent
measurements and if all other sources of contamination are eliminated, it will be the first,
albeit indirect, observation of gravitational waves.

4. Limits on Dark Matter searches were presented together with planned new experiments.
Several theoretical talks addressed the question in the framework of specific models. I will
mention them mostly in the section ”Beyond the Standard Model”. More specifically, see
the contributions of J.Heisig and T. Scarna.

3.4 Standard Model Physics

Several subjects have been discussed. I will present my conclusions.

1. The Standard Model and scale invariance.

We had a good discussion on this subject (see talks by M. Raidal, K. Kannike, M.
Schmaltz). The conclusion is that the Standard Model is not scale invariant. This re-
sult does not depend on the particular regularisation scheme one uses to perform the
renormalisation.

In fact, the only generic 4-dim, non-trivial, scale invariant, quantum field theory is the
N=4 supersymmetric theory with an SU(k) gauge symmetry. The beta-function vanishes
and the coupling constant does not run. This theory has remarkable properties which may
lead to complete integrability and are the subject of intense scrutiny during the last years
with very exciting perspectives.

2. Possible new particles without new physics.



We had the example of axions. They are part of QCD with massive quarks, so they do
not imply necessarily ”new physics”, although, in practice, all proposed models have some
features beyond the Standard Model. Their detailed properties are model-dependent. (See
review by A. Ringwald).

Let me remind you that taking into account in the QCD functional integral gauge field
configurations with non-trivial boundary conditions, amounts into adding to the effective
Lagrangian a term proportional to εµνρσF

µνF ρσ = FF̃ and work with an effective action:

Seff = SYM +
iθ

32π2

∫
d4xFF̃ (13)

with SYM the usual Yang-Mills term and θ an arbitrary constant. Our old perturbation
theory corresponds to the particular value θ = 0. In other words, a Yang-Mills theory has
a more complex structure than näıvely anticipated, namely it contains a second “hidden”
coupling constant, the parameter θ. It is easy to show that this new term is equal to the
integral over all space of a four-divergence, however it would be a mistake to ignore it
because the assumption that all fields always vanish at infinity is not correct for a gauge
theory.

∂µGµ = TrF̃µνF
µν (14)

with

Gµ = 2εµνρσTr

(
Aν∂ρAσ +

2

3
AνAρAσ

)
(15)

Gµ is not gauge invariant but, as shown in (14), its divergence is.

FF̃ is a pseudoscalar, therefore for θ 6= 0 this term violates parity. Since it conserves
charge conjugation, it violates CP and, consequently, time-reversal invariance. This is
also obvious from the presence of the i-factor. If there were no other sources of CP
violation in the theory, we could set θ = 0, but we know that weak interactions will
induce a non-zero θ term. Since strong interactions are known to conserve CP and T , it
means that experiments should put severe bounds on the allowed values of θ for QCD. It
turns out that the strongest constraint comes from the absence of a neutron electric dipole
moment. It can be translated as an upper bound for θ of the order θ < 10−9, several orders
of magnitude smaller than what we could näıvely expect from the electroweak radiative
corrections. This is known as the strong CP problem and a deeper explanation is clearly
needed.

The simplest and most elegant solution is to assume that at least one quark species is
massless. The best candidate is the u quark. Then a chiral transformation on the quark
fields will produce, through the axial anomaly, an FF̃ term which could absorb whichever
θ term we had put in. The trouble is that mu = 0 does not seem to be compatible with
the results of chiral perturbation theory, so we must look for a different explanation.

Roberto Peccei and Helen Quinn proposed to enlarge the model in such a way as to restore
a U(1) axial symmetry, even in the presence of massive quarks. For the Standard Model a
simple way to achieve this goal is to consider two BEH doublets, one which is coupled only
to up-type quarks and a second one for the down-type. Now we have an extra freedom,
namely to perform phase changes of the scalar fields. It is easy to check that the θ-term
can be absorbed and no CP violation is induced. However, as Steven Weinberg and Franck
Wilczek have observed, this U(1)PQ is spontaneously broken at the classical level, since
both BEH doublets acquire a non-zero vacuum expectation value. The resulting Goldstone



boson does not remain massless, because of the instanton effects. It follows that such a
theory contains a pseudo-scalar pseudo-Goldstone boson which is called an axion. Its
detailed properties, mass and couplings, depend on the particular model. The simplest
two doublet model is already ruled out by experiment, but other models are not. An active
experimental programme is being currently pursued aiming to the discovery and, possibly
the study, of axions.

3. The properties of the new scalar boson.

(See contributions by K. Kannike, A. Pomarol, M. Raidal and C. Weiland)

This is, obviously, a very important topic, although it is mostly the domain of experimen-
talists. We have to make sure that it is the boson of the Standard Model and, for that
purpose, we must study and measure all its detailed properties.

From the theoretical side people try to determine its general properties, as well as possible
signals of new physics.

Even if we have argued that new physics is expected at a nearby energy scale, it is still
interesting to study the properties of the scalar potential as a function of the scale. Such
studies had been done before the discovery, but now we have all the information. The
intriguing result is that the measured value of the mass lies at the border of metastability:
the scalar potential becomes metastable at very high energies. I confess I do not know
whether this is an important result, or a mere numerical coincidence.

Many contributions presented in this Conference aim at giving a precise picture of possible
new physics via the study of the properties of the scalar boson. If any departure from the
Standard Model values is detected, we shall know what kind of extensions we should
consider.

4. The electric dipole moments as probes for new physics (Review by J. Hisano).

Non-zero electric dipole moments are only possible if time reversal invariance is violated.
In the Standard Model these effects are suppressed, so the predicted values of EDM’s
are very small. This makes these quantities good probes for new physics, provided the
latter offers the possibility of enhancing CP -violation effects. In this review we had a
comprehensive picture of possible effects, but also the difficulties in interpreting whichever
signals may occur.

3.5 Beyond the Standard Model

This has occupied a large part of the presentations. Even those which I have already mentioned
previously, contain analysis for possible new physics. Specific contributions include: M. Badziak,
C. Biggio, M. Buchkremer, D. Buttazzo, O. Eberhardt, S. Fukasawa, M. Jung, D. Litim, F.
Lyonnet, D. Marzocca, S. Najjari, Ch. Petersson, J. Quevillon.

In a model independent way, we can use the analysis based on the Wilson expansion shown in
equation (12). Here M represents the scale for new physics. Operators with dimensions di > 4,
the ones we called ”irrelevant operators”, will give contributions suppressed by M4−di . Since
such operators may contribute to processes beyond the Standard Model, such as the EDM’s we
mentioned before, they provide sensitive tests of New Physics.

Supersymmetry is still the favourite model for both theorists and experimentalists. I am
sure by now everybody has heard about supersymmetry more than he ever wished to know,
so I will not present the details of any model. It is the most attractive and the most seminal
theoretical idea of the last decades, but we have to admit that, if it is the way chosen by Nature,
we do not know neither how, nor where it is broken. I was pleased to see that both theorists
and experimentalists have escaped the unjustified tyranny of MSSM and the data are presented,
as much as possible, in a model independent way. In the notation we used in equation (12),



supersymmetry ensures that the coefficient CS of the scalar mass term, which is proportional
to M2, vanishes and the fine tuning problem is eliminated. The second good thing about
supersymmetry is that in order for this to happen, M cannot be arbitrarily large. We hope
it will turn out to be within reach of improved LHC and we are looking forward to exciting
discoveries.

4 Conclusions

• The field is active showing a good collaboration between theorists and experimentalists.

• More than 40 theoretical presentations, many coming from young researchers.

• We have the clear feeling of excitement, both from the long awaited confirmation of the
Standard Theory, as well as from the expectation of New Physics.

I end with a story (A. Pais, Inward Bound)
A tourist was visiting Washington DC. Behind the National Archives he noticed a statue of

a seated woman holding an open book on her lap. Underneath there was the inscription: What
is past is prologue. What does it mean? he asked his guide. And the latter replied: It means
you ain’t heard nothing yet.


	Contents
	Introduction. General Outlook
	The perturbation expansion.
	The strong coupling regime.
	New Physics.

	What we have learned
	Heavy flavours
	Neutrinos
	Astrophysics and Cosmology
	Standard Model Physics
	Beyond the Standard Model

	Conclusions

