

CARLA BIGGIO Università di Genova

IS THE SM SCALAR THE FIRST DISCOVERED SUSY PARTICLE?

Based on JHEP 1302 (2013) 081 [ARXIV: 1211.4526] with A. Pomarol and F. Riva

> Rencontres de Moriond 2014 Electroweak Interactions and Unified Theories La Thuile, 15-22/03/2014

The recently discovered scalar particle IP and the neutrino V have the same gauge quantum numbers:

 $L = \begin{pmatrix} \nu \\ l_L^- \end{pmatrix} = (1,2)_{1/2} \qquad \qquad H = \begin{pmatrix} h^0 \\ h^- \end{pmatrix} = (1,2)_{1/2}$

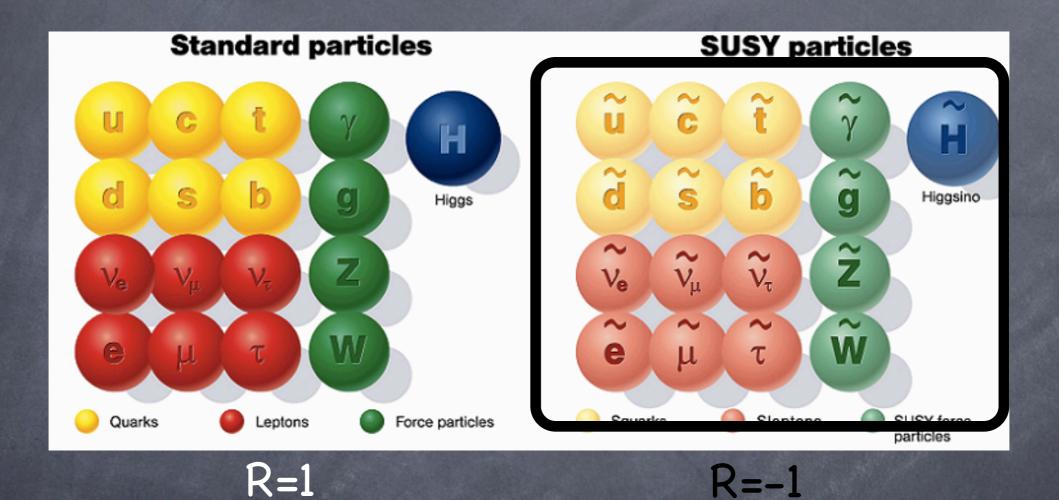
but L is a fermion and H is a boson...

can they be one the superpartner of the other?

The recently discovered scalar particle INDER and the neutrino V have the same gauge quantum numbers:

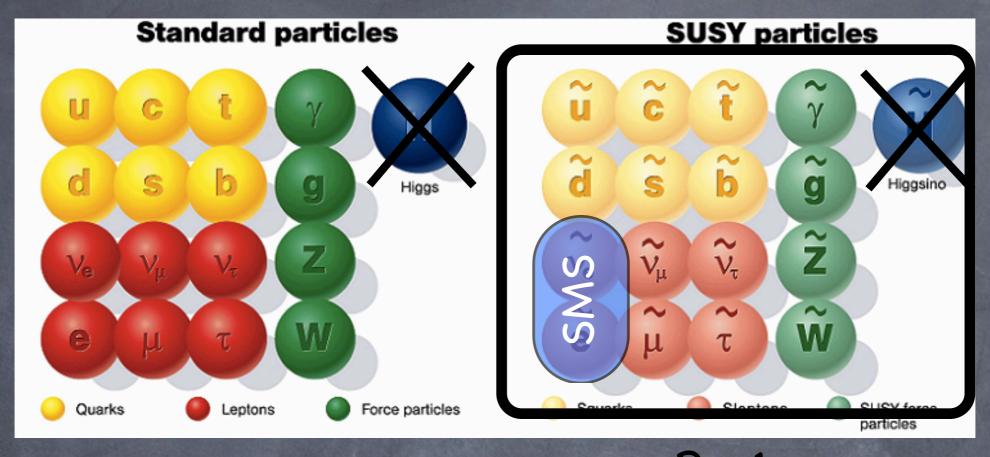
 $L = \begin{pmatrix} \nu \\ l_L^- \end{pmatrix} = (1,2)_{1/2} \qquad \qquad H = \begin{pmatrix} h^0 \\ h^- \end{pmatrix} = (1,2)_{1/2}$

but L is a fermion and H is a boson...

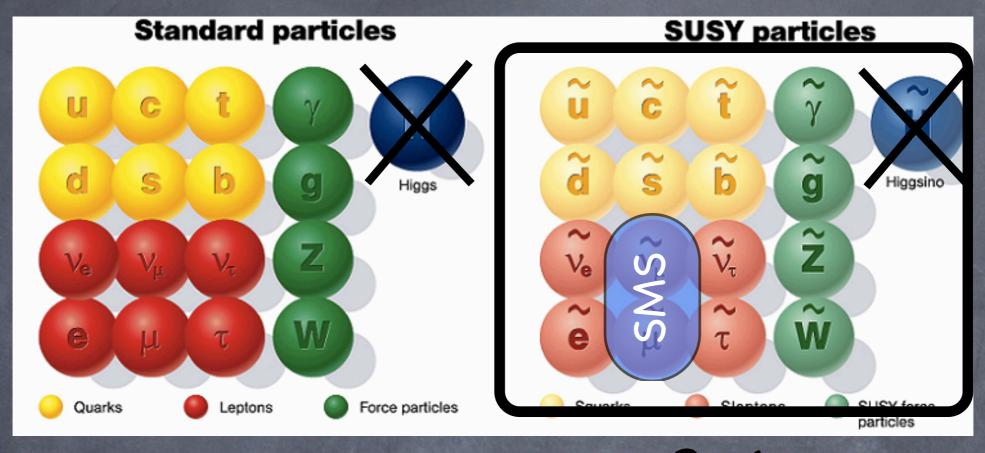

can they be one the superpartner of the other?

YES!

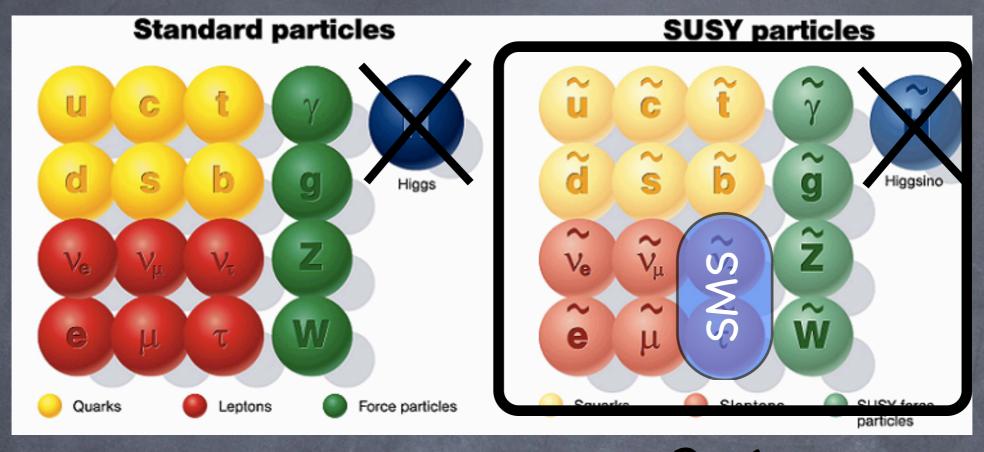
but not trivial: 2 conditions have to be satisfied

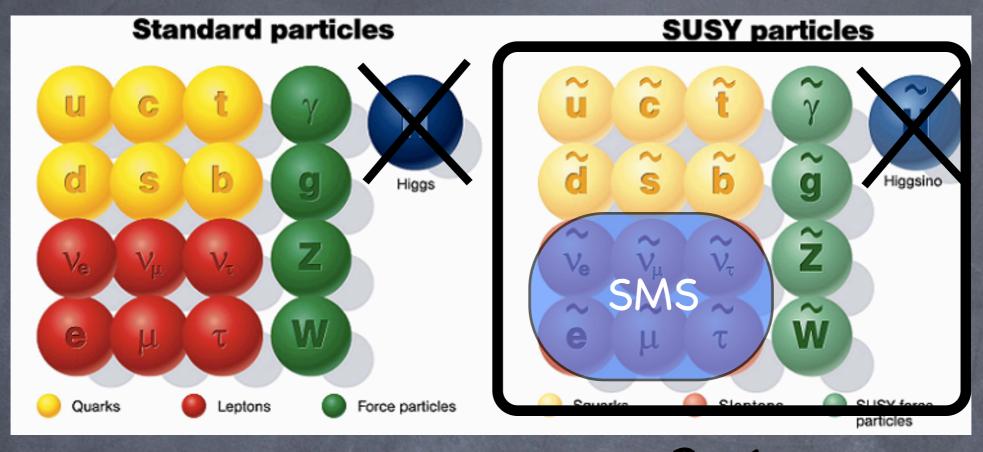

MSSM WITH R-PARITY

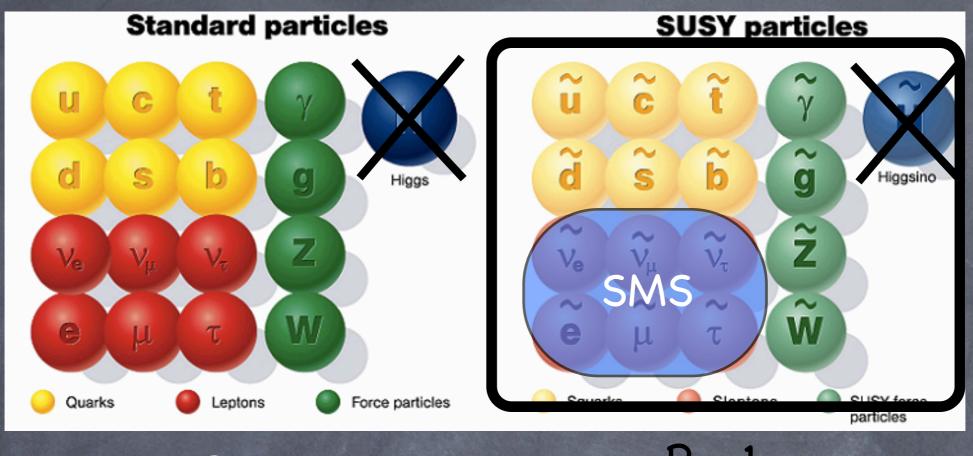
An R-parity is imposed, mainly to avoid fast proton decay



Conseqs:


stable Lightest SUSY Particle (LSP): DM candidate?
 @LHC SUSY particles produced in pairs
 @LHC if LSP neutral, a lot of MET (missing energy)


R=1

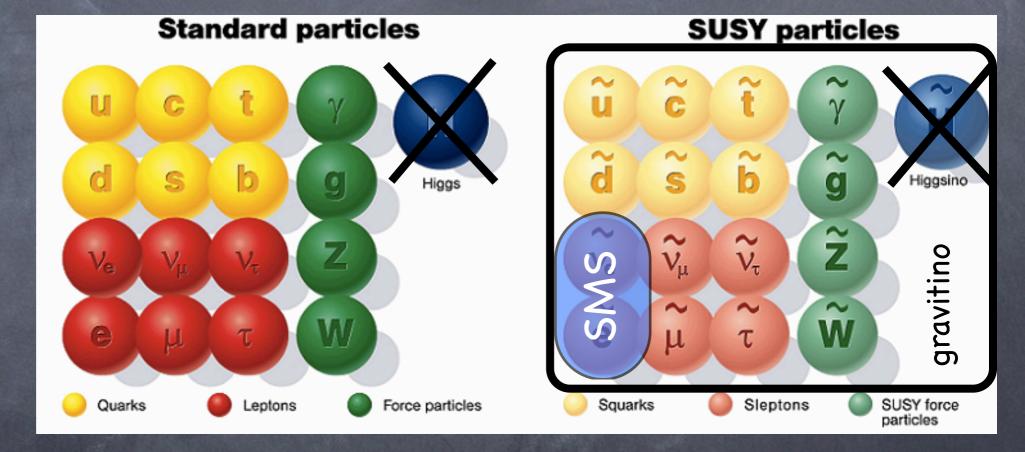

R=1

R=1

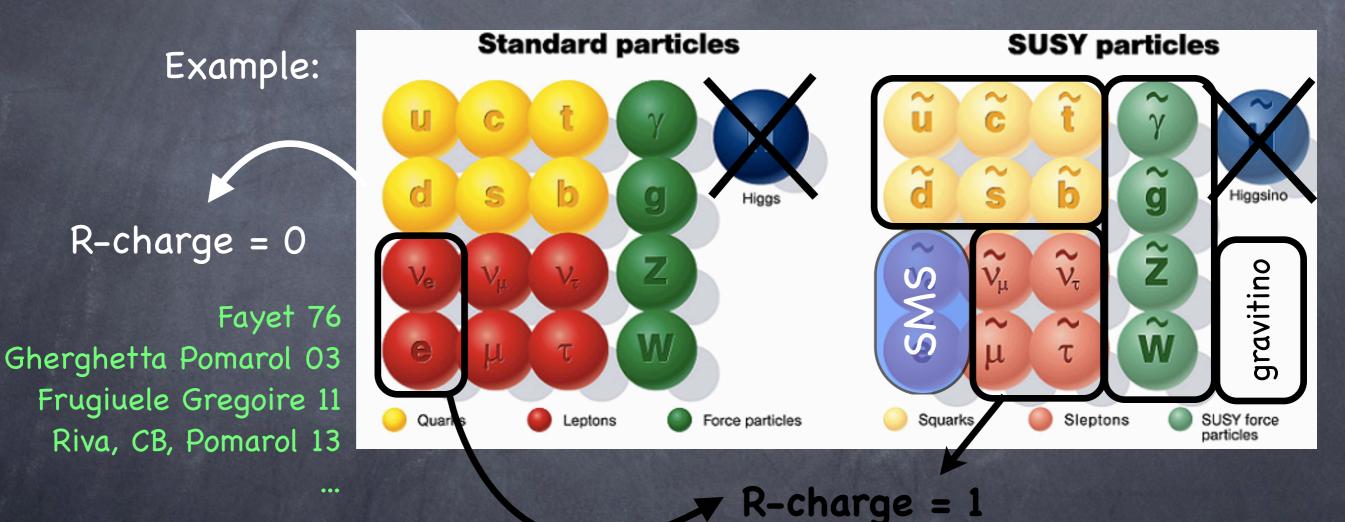
R=1

R=1

R=-1


Is R-parity still viable? NO!

The scalar vev breaks R-parity and L-number


- \rightarrow fast proton decay
- \rightarrow large neutrino masses

1^{st} condition: replace R-parity with U(1)_R symmetry acting as a Lepton Number

Example:

1^{st} condition: replace R-parity with U(1)_R symmetry acting as a Lepton Number

The SMS vev does not break $U(1)_R = U(1)_{LN}$

 1^{st} condition: replace R-parity with U(1)_R symmetry acting as a Lepton Number

Phenomenological consequences:

- relations among squark masses $m_{\tilde{b}_T}^2 = m_{\tilde{t}_T}^2 m_t^2 + m_b^2$
- Dirac gaugino masses \rightarrow no same-sign dileptons
- lepton-gaugino mixing: lepton couplings modified

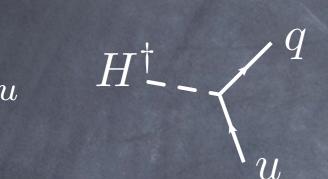
 $\langle \tilde{\nu} \rangle$

→ gaugino masses > TeV

 m_u H^{\dagger}_{-} $\swarrow q$ \swarrow Cannot be supersymmetrized: (superpotential must be analytic)

Usual solution:

 m_d


 $m_d \quad H_d - \bigwedge^q \checkmark$

 $m_u \quad H_u - \bigwedge_{\eta}^{q} \checkmark$

Two scalar doublets: - MSSM $-H_u + L=H_d$ Frugiuele Gregoire 2011

 m_d

 $H - \sqrt{\frac{q}{d}}$ Can be supersymmetrized

 m_u H^{\dagger}_{-} $\begin{pmatrix} q \\ \chi \end{pmatrix}$ Cannot be supersymmetrized: (superpotential must be analytic)

We would like to have only 1 scalar doublet, identified with a lepton superpartner

 \rightarrow 2nd condition: the masses of the up-type quarks should come from a SUSY breaking sector

Masses from SUSY breaking sector: not a surprise!

m_H≈125GeV requires SUSY :

 $(125 \text{GeV})^2 = m_Z^2 \cos^2 2\beta + \delta m^2$ SUSY: < (91 GeV)² $(86 \text{GeV})^2$ $(86 \text{GeV})^2$

(In the MSSM large A-terms or heavy stops)

 $W = Y_d HQD + Y_{e\,ij} HL_i E_j$

 $\rightarrow m_d$ $\rightarrow m_e \text{ (not for L_3)}$

$$W = Y_d HQD + Y_{e\,ij} HL_i E_j \qquad \xrightarrow{\rightarrow} m_d \\ \rightarrow m_e \text{ (not for } L_3)$$

All the rest comes from SUSY breaking terms:

- 1. up-type quarks Yukawa couplings
- 2. L₃ Yukawa coupling
- 3. gaugino masses
- 4. Higgs quartic coupling

$$W = Y_d HQD + Y_{e\,ij} HL_i E_j \qquad \xrightarrow{\rightarrow} m_d \\ \rightarrow m_e \text{ (not for } L_3)$$

All the rest comes from SUSY breaking terms:

1. up-type quarks Yukawa couplings

$$\int d^{4}\theta \ y_{u} \frac{X^{\dagger}}{M} \frac{H^{\dagger}QU}{\Lambda} = \int d^{2}\theta \ Y_{u}H^{\dagger}QU \qquad Y_{u} = y_{u} \frac{F}{M\Lambda}$$
SUSY mediation scale ' ' effective op. scale
$$Y_{u} \sim 1 \Rightarrow \Lambda \sim y_{u} \frac{F}{M} \qquad m_{\tilde{q}} \sim \frac{F}{M} \lesssim \text{TeV} \Rightarrow \Lambda \lesssim 4\pi \text{TeV}$$

This model is an effective theory valid up to ~ 10 TeV

Hierarchy problem still solved, natural "splitted" spectrum

PHENOMENOLOGY: THE SMS

Only 1 scalar, tree-level couplings as in the SM

PHENOMENOLOGY: THE SMS

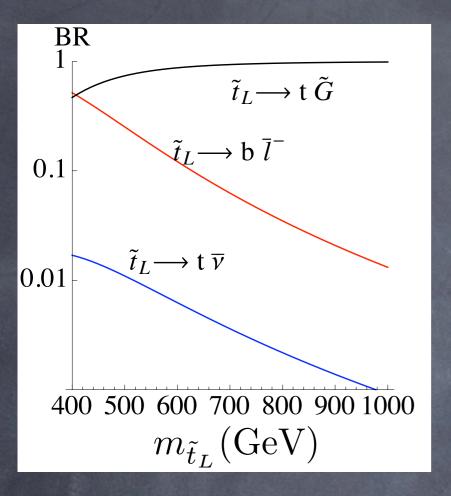
Only 1 scalar, tree-level couplings as in the SM

Possible deviations:

1. modification of couplings from loops mediated by stops

 $g_{HYY} \rightarrow \Gamma(H \rightarrow \Upsilon)$ modified \leftarrow small effect $g_{Hgg} \rightarrow \Gamma(H \rightarrow gg)$ and σ_{prod} modified \leftarrow sizable effect

2. interaction with goldstinos (H and v are superpartners) if the gravitino is light (LSP): $H \rightarrow \tilde{G} v$ \rightarrow invisible Br up to 10%

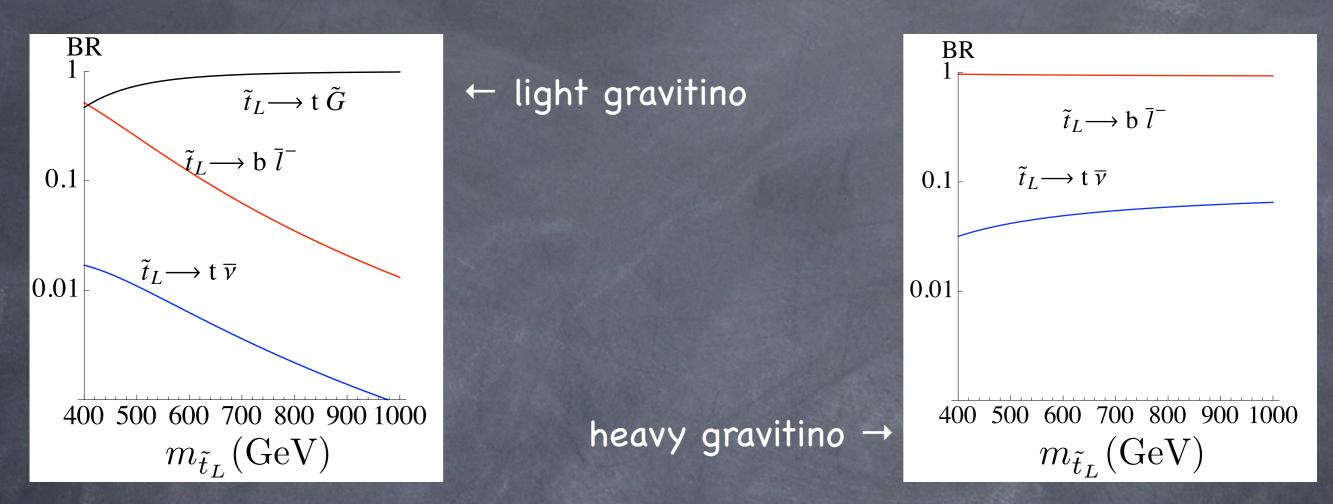

$\tilde{f}_{R}, \tilde{b}_{L}$ PHENO: STOPS AND SBOTTOMS

 f_R and b_L decay only into top/bottom + MET \Rightarrow MSSM searches can be adapted

> from $\tilde{b} \to b\chi_0$ with $m_{\tilde{\chi}^0} = 0$: $m_{\tilde{b}_L} > 650 \text{ GeV}$ $\downarrow m_{\tilde{t}_L}^2 = m_{\tilde{t}_L}^2 - m_t^2 + m_b^2$ $m_{\tilde{t}_L} > 670 \text{ GeV}$ > from $\tilde{t} \to t\chi_0$ with $m_{\tilde{\chi}^0} = 0$: $m_{\tilde{t}_R} > 685 \text{ GeV}$ stops lighter than tops in principle still allowed:

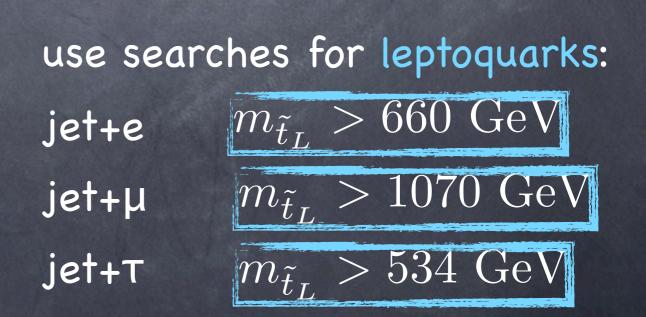
 $150 \text{ GeV} < m_{\tilde{t}_R} < 190 \text{ GeV}$

PHENO: STOPS AND SBOTTOMS


ŤL

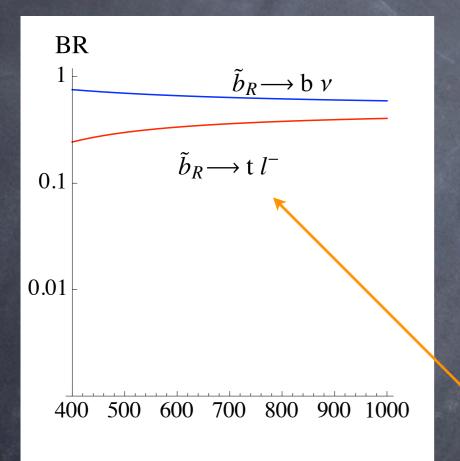
adopt MSSM searches on jets + MET:

← light gravitino


PHENO: STOPS AND SBOTTOMS

adopt MSSM searches on jets + MET:

τ_l


$$m_{\tilde{t}_L} > 685 {
m ~GeV}$$

Look for b-jet + e/μ !!!

b_R **PHENO: STOPS AND SBOTTOMS**

Light gravitino: $\tilde{b}_R \rightarrow b \tilde{G}$ dominates (factor ~10); otherwise:

Similar Br, both controlled by Y_b , bounds from MSSM searches for b-jets+MET

Look for top + leptons!!!

LHC SEARCH STRATEGY (AN EXAMPLE OF HOW TO DISTINGUISH FROM MSSM)

> b-jet + MET observed:

- it's our b_R only if observe also leptoquark decays @ same mass - it can be \tilde{b}_L if observe \tilde{t}_L @ slightly heavier mass

> t + MET observed:

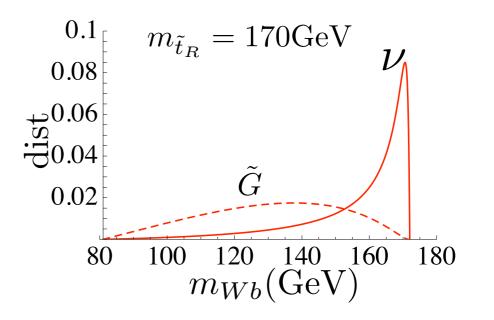
- it's our \tilde{t}_L if observe also b+l decays

- it can be \tilde{f}_R ; look at top helicity

LHC SEARCH STRATEGY (AN EXAMPLE OF HOW TO DISTINGUISH FROM MSSM)

> b-jet + MET observed:

- it's our \tilde{b}_R only - it can be \tilde{b}_L if


> t + MET observ

- it's our \tilde{t}_L if ob - it can be \tilde{t}_R ; lo

op helicity:
$$m_{{ ilde t}_R} \gg m_t$$

$$\tilde{t}_R \rightarrow t_R \tilde{G}$$
 as MSSM
 $\tilde{t}_R \rightarrow t_L \nu_L$

$$\cdot m_{\tilde{t}_R} < m_t$$

PHENO: 1ST AND 2ND GEN. SQUARKS

Iight gravitino (and F≈TeV²) $\widetilde{q} \rightarrow q\widetilde{G} \quad \checkmark jets + MET \qquad m>830GeV$

heavy gravitino (or F>>TeV²)
 2-body decays can be suppressed by small Yukawas
 3-body decays can dominate

$$M_{\tilde{W}} \gtrsim 2 \text{TeV}$$
 $\tilde{u}_{L,R}, \tilde{d}_{L,R} = -\frac{l^-, \bar{\nu}}{2}$
 u, d
 h, Z, W

PHENO: SLEPTONS

Ø light gravitino (and F≈TeV²)

 $\tilde{l} \rightarrow l\tilde{G} \rightarrow l\tilde{G} \rightarrow leptons + MET m>270GeV$ $\tilde{v} \rightarrow v\tilde{G} \rightarrow MET ; monojet, dijet+MET$

heavy gravitino (or F>>TeV²)

3-body decays can dominate

$\tilde{e}_L ightarrow u_e + \bar{ u}_L + W^-$	$ ilde{\mu}_L ightarrow u_\mu + ar{ u}_L + W^-$	$ ilde{ au_L} o au + ar{ u}_L$
$\tilde{e}_R \rightarrow e + l_L^- + W^+$	$\tilde{\mu}_R \rightarrow \mu + \nu_L \ (50\%)$	$\tilde{\tau}_R \rightarrow \tau + \nu_L (50\%)$
	$\rightarrow \nu_{\mu} + l_L^- (50\%)$	$ ightarrow u_{ au} + l_L^-$ (50%)
$\tilde{\nu}_e \to e + \bar{l}_L^- + Z$	$\tilde{ u}_{\mu} ightarrow \mu + Z + \bar{l}_L^-$	$\tilde{\nu}_{\tau} \rightarrow \tau + \bar{l}_L^-$

Look for these channels!!!

CONCLUSIONS

We have investigated the viability of a SUSY model where no chiral Higgs superfield is needed: the role of the SMS is played by a (comb. of) sneutrino(s)

Natural splitted spectrum: no Higgsinos, only light stops and sbottoms, heavy gauginos

Interesting LHC pheno to test model and distinguish from MSSM

- > leptoquark decays
- > SM scalar invisible width
- > 3-body decays

CONCLUSIONS

We have investigated the viability of a SUSY model where no chiral Higgs superfield is needed: the role of the SMS is played by a (comb. of) sneutrino(s)

Natural splitted spectrum: no Higgsinos, only light stops and sbottoms, heavy gauginos

Interesting LHC pheno to test model and distinguish from MSSM

- > leptoquark decays
- > SM scalar invisible width
- > 3-body decays

Thanks!

If you think SUSY is not here `cause you don't see it, do not desperate... maybe we've already discovered it, just need a confirmation!

BACK-UP SLIDES

$$W = Y_d HQD + Y_{e\,ij} HL_i E_j \qquad \xrightarrow{\rightarrow} m_d \\ \rightarrow m_e \text{ (not for } L_3)$$

All the rest comes from SUSY breaking terms:

3. gaugino masses :

$$\int d^2\theta \ \frac{D^{\alpha}X}{M} W^a_{\alpha} \Phi_a$$

 $m\sim rac{F'}{M}$

Constraints on gaugino masses: $\langle \tilde{\nu} \rangle$ > after EWSB winos mix with leptons $l^- \longrightarrow \tilde{W}^-$

(From universality constraints: $M_{ ilde{B}}\gtrsim 500~{
m GeV}$)

$$W = Y_d HQD + Y_{e\,ij} HL_i E_j \qquad \xrightarrow{\rightarrow} m_d \\ \rightarrow m_e \text{ (not for } L_3)$$

All the rest comes from SUSY breaking terms:

4. SUSY quartic coupl. :

$$\int d^4\theta \ \lambda_H \frac{X^{\dagger}X}{M^2} \frac{|H|^4}{\Lambda^2} = \delta \lambda_h h^4 + \dots$$

 $U(1)_R$ forbids A-terms; light stop masses \Rightarrow additional quartic required to get m_H \approx 125GeV

 $\delta\lambda_h \sim 0.015$

$H \equiv \tilde{v}$: ADVANTAGES & CONSEQUENCES

no Higgsinos
A HiggsinolessMSSM

NO µ-problem: scalar mass entirely arises from SUSY terms
 NO anomalies: the only extra fermions are in the adjoint (for gaugino masses, see later)

minimal model with natural low energy SUSY spectrum

Moreover: No R-parity \Rightarrow no large MET in final states at the LHC new final states at the LHC

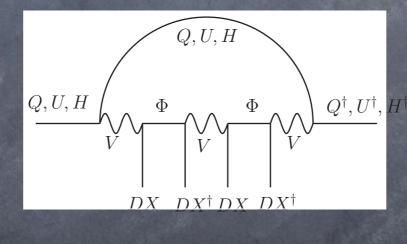
$U(1)_R$ BREAKING

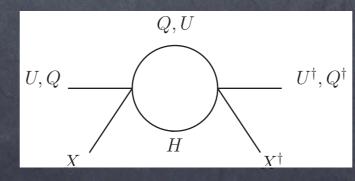
$U(1)_R$ is broken by gravitino mass:

$$m_{3/2} \sim \frac{F}{M_{Pl}} \sim 10^{-3} \text{eV} \left(\frac{\sqrt{F}}{2\text{TeV}}\right)^2$$

Majorana v mass ~ $m_{3/2}$ can be generated

— if other SUSY sources are present gravitinos can be heavy:

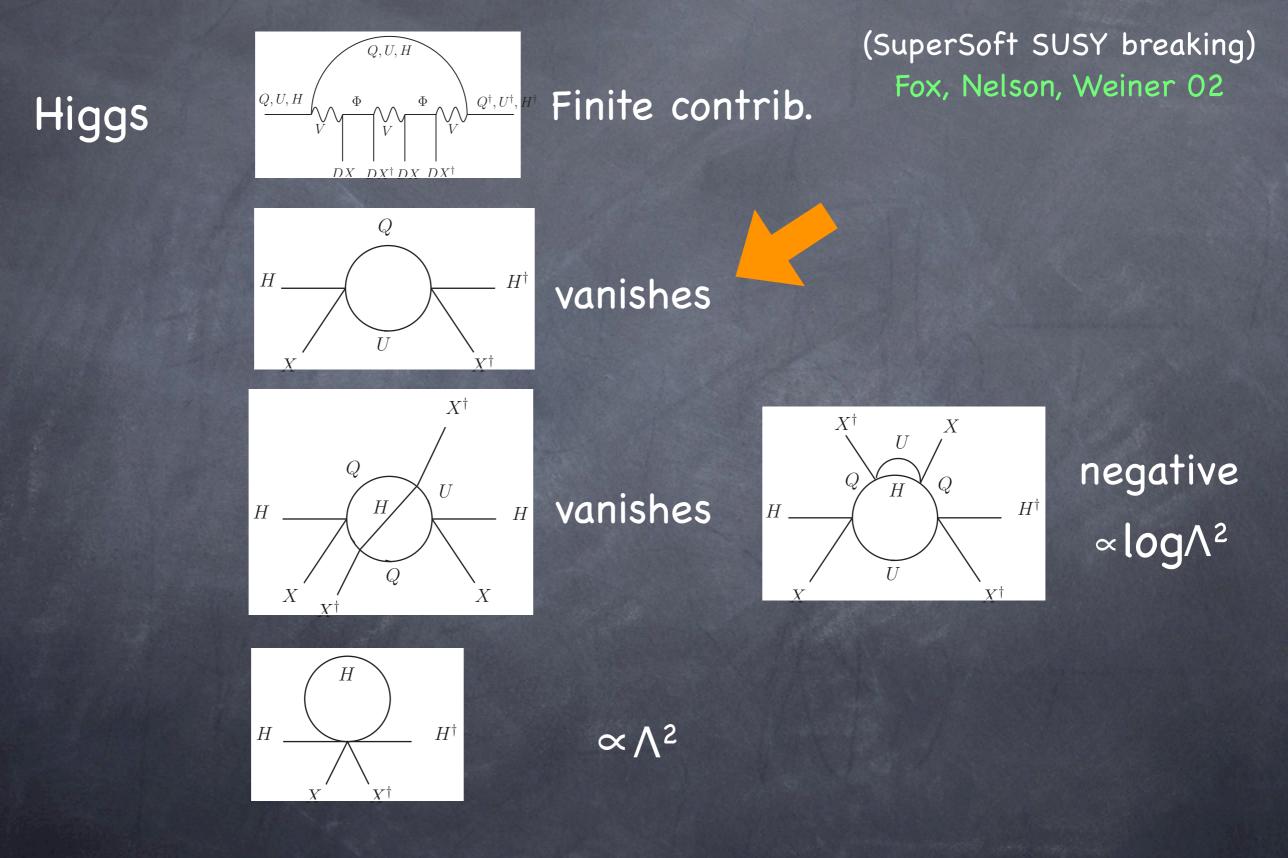

⇒ 2 scenarios: - gravitino L(R-charged)P
- neutrino L(R-charged)P


A NATURAL SPECTRUM

The presence of SUSY operators generates at the loop level other SUSY terms: - is m_H OK? \ - soft masses for scalars?

$$\int d^4\theta \; \left\{ g_Q \frac{X^{\dagger}X}{M^2} Q^{\dagger}Q + g_U \frac{X^{\dagger}X}{M^2} U^{\dagger}U + g_H \frac{X^{\dagger}X}{M^2} H^{\dagger}H \right\}$$

Squarks:


Finite contrib.

(SuperSoft SUSY breaking) Fox, Nelson, Weiner 02

 $\propto \Lambda^2$

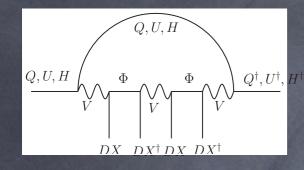
Low cutoff

A NATURAL SPECTRUM

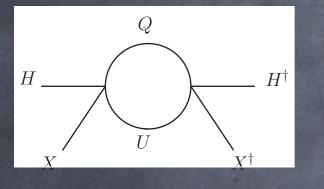
A NATURAL SPECTRUM

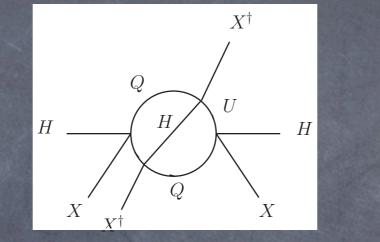
$$m_{Q,U}^2 \simeq (400 \text{ GeV})^2 \left[\left(\frac{M_{\tilde{g}}}{2 \text{ TeV}} \right)^2 \ln \frac{M_{\Phi_{\tilde{g}}}^2}{M_{\tilde{g}}^2} + (0.15, 0.3) \left(\frac{\Lambda}{2 \text{ TeV}} \right)^2 \right]$$

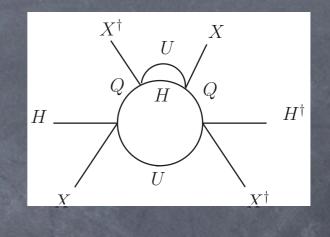
naturally "light" 3rd gen. squarks


$$m_{H}^{2} \simeq -(100 \text{ GeV})^{2} \quad \left| 4.3 \left(\frac{m_{Q}}{600 \text{ GeV}} \right)^{2} \frac{\ln \frac{\Lambda}{m_{Q}}}{\ln 5} - 3.2 \left(\frac{M_{\tilde{W}}}{2 \text{ TeV}} \right)^{2} \ln \frac{M_{\Phi}^{2}}{M_{\tilde{W}}^{2}} - \left(\frac{\delta \lambda}{0.015} \right) \left(\frac{\Lambda}{2 \text{ TeV}} \right)^{2} \right| \right|^{2}$$

EWSB can occur naturally


other sparticles: at least as heavier as the above (they get masses at least from the gaugino loop and maybe also from SUSY operators, if there; in this case they can be heavier)


> Most minimal low-energy SUSY model: only stops & sbottoms (gravitinos) below the TeV


LOOP CONTRIBUTION TO MH

SuperSoft SUSY breaking: Dirac gauginos only induce finite contributions Fox, Nelson, Weiner 02

Eq. (3) is induced. Interestingly, the equivalent one-loop contribution for the Higgs soft-mass, the first diagram of fig. 3, vanishes. This can be understood as follows. If we are interested only in the scalar component of H, we can neglect the θ -dependent part of H and write the top Yukawa coupling as $\int d^2\theta \ Y_u H^{\dagger} Q U = Y_u H^{\dagger} \int d^2\theta \ Q U$ that is supersymmetric and then cannot generate soft-breaking terms. At the two-loop level, however, where the full Higgs superfield H can propagate (see fig. 3), we do expect a nonzero Higgs soft-mass to be induced. Surprisingly, we find that the contribution arising from the second diagram of fig. 3 vanishes, and only the third diagram induces a nonzero m_H^2 . The latter is proportional to the squark masses, and, as in the MSSM, diverges logarithmically:

POSSIBLE UV COMPLETIONS

So this model + H_u + R_d (Frugiuele Gregoire 2011) $\mu H_u R_d \rightarrow mass$ for Higgsinos $y_u H_u QU \rightarrow mass$ for up-type quarks $B_\mu R_d H^+ X^+/M$

 $\mu >> v$ integrate out $H_u \& R_d$

 $Y_u = y_u F / \mu M$

$$\int d^4\theta \ y_u \frac{X^{\dagger}}{M} \frac{H^{\dagger}QU}{\Lambda} = \int d^2\theta \ Y_u H^{\dagger}QU$$

also a soft mass for H @ tree-level $m_{H} \sim F/M \rightarrow Y_{u} \sim 1 \rightarrow y_{u} \sim \mu/m_{H} > 1$ strong dynamics above the TeV? (composite Higgs or top)

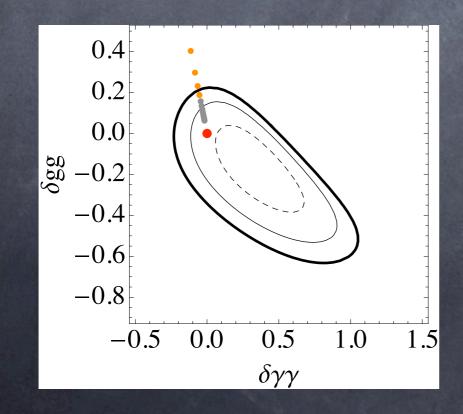
POSSIBLE UV COMPLETIONS

Top (L or R) partly arising from vector superfields example: $V_{\pm} \sim (3,2) + (\overline{3},2)$

 $M_V^2V_+V_- + g_VV_-X^+Q_+g_VV^+H^+U$

integrate out V:

also soft mass for Q @ tree-level again g_V>1 to have m_Q<M_V again strong dynamics above the TeV?


V can be a massive gauge boson Ex. coming from SU(5) Cai, Cheng, Terning 2008

PHENOMENOLOGY: THE SMS

Only 1 scalar, tree-level couplings as in the SM

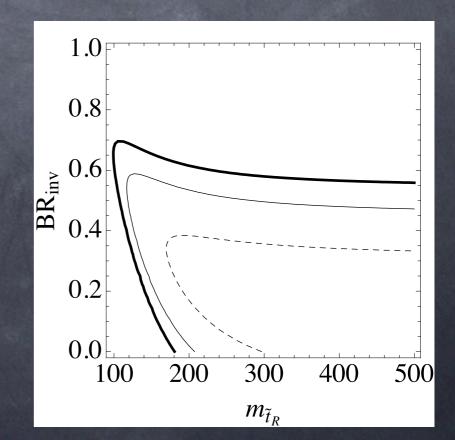
Possible deviations from:

1. modification of couplings from loops mediated by stops $g_{HYY} \rightarrow \Gamma(H \rightarrow YY)$ modified \leftarrow small effect $g_{Hgg} \rightarrow \Gamma(H \rightarrow gg)$ and σ_{prod} modified \leftarrow sizable effect

Fit to Higgs data: heavier stops are favored...

PHENOMENOLOGY: THE SMS

Only 1 scalar, tree-level couplings as in the SM


Possible deviations from:

2. interaction with goldstinos (H and v are superpartners) if the gravitino is light (LSP)
 → invisible decays into gravitino

$$\Gamma(h \to \tilde{G}\nu_L) \simeq \frac{1}{16\pi} \frac{m_h^5}{F^2}$$

 $\sqrt{F} \approx 1 \text{ TeV} \rightarrow Br_{inv} \approx 10\%$

Brinv ≠0 lighter stops still allowed

