Double Chooz

Results towards the ND phase

Pau Novella (CNRS/APC)On behalf of the DC collaboration

Overview

- Reactor neutrinos and θ_{13}
- The Double Chooz experiment
- n-Gd and n-H R+S oscillation results
- Reactor Rate Modulation analysis
- Towards the ND+FD phase
- Summary and conclusions

Reactor neutrinos and θ_{13}

In contrast to accelerator experiments....

$$P_{ee}(E_{\overline{\nu}_e}, L, \Delta m_{31}^2, \theta_{13}) = 1 - \sin^2(2\theta_{13})\sin^2\left(1.27\frac{\Delta m_{31}^2[10^{-3} \text{ eV}^2]L[\text{km}]}{E_{\overline{\nu}_e}[\text{MeV}]}\right)$$

- No parameter correlations
 Pure v_e beam
- Low energy

- No matter effects
- Cheap, as source exists
- High flux and large x-section

2014: θ_{13} measured by DC, DB and RENO \rightarrow precision phase!

P. Novella, DC New Results, Moriond 2014

Setting up the experiments

The Double Chooz Experiment

edf

CLOSE DETECTOR

L = 400m $10m^3$ target 120 m.w.e. Summer 2014

Far Detector L = 1050m 10m³ target 300 m.w.e. April 2011 ~

P. Novella, DC New Results, Moriond 2014

• Low background (S/N ~ 20, proven by reactor OFF)

Pioneered reactor experiments after CHOOZ:
 Experimental concept of using two detectors

• New detector structure: 4 layers detector

• Stable Gd loaded LS developed

EST BEACT

The DC Collaboration

Double Chooz Detectors

Detector Calibration

Neutrino Candidates Selection

n from IBD can be captured either in Gd or H

Backgrounds (I)

Events mimicking the IBD prompt-delayed correlation

• μ related + radiactivity

- Uncorrelated (accidentals):
 - Radioactivity + fast neutrons
- Correlated:
 - Fast neutrons (FN): p recoil + n capture
 - Stopping- μ (SM): μ + Michel electron
 - cosmogenic isotopes (⁹Li/⁸He): n-β decay

Background measurements on site

238T

232**Th**

Tagged by OV and IV

Candidates Selection (II)

			n-Ga
p-d correlation	n-Gd	n-H	(A9W) 14-
E prompt	0.7-12.2 MeV	0.7-12.2 MeV	
E delayed	6.0-12.0 MeV	1.5-3.0 MeV	10
ΔΤ	2-100 μs	10-600 µs	
ΔR		<0.9 m	
			prompt E (Mev

BG reduction	n-Gd	n-H
μ veto	$\Delta T > 1ms$	
Showering-µ	E_{μ} > 600 MeV, Δ T > 0.5s	
isolation	500 μs	1600 μs
OV veto	Prompt not coincident with OV	

10²

10

Neutrino Candidates Rate

Run Time: 251.3 day

Backgrounds (II)

Systematic Uncertainties

Rate Error (%)	n-Gd	n-H
statistics	1.1	1.1
Flux prediction	1.7	1.7
det. efficiency	1.0	1.6
background	1.6	1.7
Total	2.7	3.1

Shape uncertainties

Reactor spectrum Energy scale ⁹Li spectrum FN/SM spectrum

- Dominated by flux error:
 - to be canceled by the ND

- ⁹Li/⁸He dominates the BG error
 - 1.5% for n-Gd, 1.6% for n-H
 - To be reduced with larger stats

R+S Oscillation Results

Phys. Rev. D86 (2012) 052008

P. Novella, DC New Results, Moriond 2014

Reactor-Off: BG measurement

2011 and 2012 reactor-off samples: 7.53 days

n-Gd selection: R_{BG}=1.0±0.4 events/day
n-H selection: R_{BG}=10.8±3.4 events/day (acc. sub.)

Consistent with BG model used in R+S fit Phys.Rev. D87 (2013) 011102

Gd-H Combined Result

• Taking the most from DC: n-Gd + n-H + Reactor-Off:

Rate+Shape: $\sin^2 2\theta_{13} = 0.109 \pm 0.035$

Rate-Only: $\sin^2 2\theta_{13} = 0.107 \pm 0.045$

To be compared with n-Gd "only":

Rate+Shape: $\sin^2 2\theta_{13} = 0.109 \pm 0.039$ Rate-Only: $\sin^2 2\theta_{13} = 0.170 \pm 0.052$

• n-H will be a powerful handle to improve the θ_{13} results

New since Motiona 2013 **Reactor Rate Modulation**

• New θ_{13} /BG analysis

Different reactor powers (2-Off!)

No background model assumed 0

1) BG-independent θ_{13} measurement

2) cross-check of the BG model

RRM unique in DC:

- 2 reactors only
- Reactor-Off data
- n-Gd and n-H samples

n-Gd RRM Analysis

ArXiv:1401.5981, submitted to PLB

$$R^{\text{obs}} = B + R^{\text{exp}} = B + (1 - \sin^2(2\theta_{13})\eta_{\text{osc}}) R^{\nu}$$

 θ_{13} from the slope, while BG from extrapolation to 0 power

P. Novella, DC New Results, Moriond 2014

New since Motiona 2013

Gd-H Combined RRM Result New since Moriond 2013

ArXiv:1401.5981, submitted to PLB

•

Taking the most from DC: n-Gd + n-H + Reactor-Off: 0

 θ_{13} consistent with R+S fit, BG consistent with BG model used in R+S fit

Summary of DC Results

ArXiv:1401.5981, submitted to PLB

- 4 different θ_{13} analysis:
 - 2 samples: nGd and nH
 - 2 methods: R+S and RRM
 - RS: BG-model dependent
 - RRM: BG-model independent
 - 2 combined results:
 - R+S with nGd + nH
 - RRM with nGd and nH
 - θ_{13} consistent within 1σ
 - BG model consistent 2-Off and RRM

0

ND+FD Analysis Ongoing

New since Moriond 2013!

- Precision on θ_{13} is limited by reactor systematics (1.8%): ~3 σ
- New analysis: reduction of all other systematics with FD only (x2 stats)
 - exploit DC capabilities in the ND+FD phase (reactor sys canceled!)

Towards a New Selection

x2 stats, new energy reconstruction

New since Moriond 2013!

• Open cuts + new BG vetoes: boosted $S/B \rightarrow$ reduced detection and BG sys

P. Novella, DC New Results, Moriond 2014

Near Detector

Data taking starting in summer 2014

Physics beyond θ_{13}

- Background studies (reactor-off) (DC,PRD 87, 011102(R), 2013)
- Lorentz violation (DC Coll., PRD 86, 112009, 2012)
- Neutrino directionality (DC, arXiv:1208.3628)
- Sensitivity to Δm_{13}^2 (arXiv:1304.6259 [hep-ex])
- Sterile neutrino (PRD 83, 073006, 2011)
- Muon physics (DC, paper in preparation)
- Orto-positronium observation (DC, La Thuile 2014)
- Reactor physics (future ND data)

Summary and Conclusions

- Successful FD-Only phase (almost completed): limited by reactor sys
 - 4 θ_{13} measurements: nGd and nH with R+S and RRM
 - 3 independent BG measurements: Reactor-On, Reactor-Off and RRM

- New result: R+S nGd-nH combined: $sin^2 2\theta_{13} = 0.109 \pm 0.035$

- New RRM analysis: BG model-independent measurement of θ_{13}

• nGd: $\sin^2 2\theta_{13} = 0.107 \pm 0.049$. nGd+nH: $\sin^2 2\theta_{13} = 0.102 \pm 0.043$

- ND+FD phase to be started: $\sim 10\% \theta_{13}$ measurement expected
 - ND will start operation by summer 2014
 - ND+FD analysis "already ongoing": better S/B, reduced systematics
- Rich physics program beyond θ_{13}

Photo: Lola Garrido

Energy Scale

PE nonlinearity: LED system
Detector uniformity: nH captures map
Time stability: nH captures

P. Novella, DC New Results, Moriond 2014

Reactor Rate Modulation Analysis

Statistical Analysis

Standard χ² minimization:

$$\chi^2 = \chi^2_{on} + \chi^2_{off} + \chi^2_{pull}$$

Distinguish between Reactor-On and Reactor-Off periods

Different systematics

 $\chi_{on}^2 = \sum_{i}^{N} \frac{\left(R_i^{obs} - f(R_i^{exp}) \cdot \left[1 + \alpha^d + \alpha_i^r + w_i \cdot \alpha_i^\nu\right]\right)^2}{\sigma_{stat}^2}$

 $\chi_{off}^2 = \frac{\left(R^{obs} - K \cdot \left[1 + \alpha^d + w_i \cdot \alpha^\nu\right]\right)^2}{\sigma_{stat}^2}$

$$\chi^2_{pull} = (\frac{\alpha^d}{\sigma_d})^2 + \sum_i^N (\frac{\alpha^r_i}{\sigma^r_i})^2 + (\frac{\alpha^\nu}{\sigma_\nu})^2$$

- α^d pull for detection sys
- α^r pull for reactor-on sys
- α^{v} pull for res-v sys
- w: fraction of res-v

$$\chi_{off}^2 = 2 \left(R^{obs} \cdot T_{off} \cdot \ln \frac{R^{obs} \cdot T_{off}}{K \cdot [1 + \alpha^d + w_i \cdot \alpha^\nu]} + K \cdot [1 + \alpha^d + w_i \cdot \alpha^\nu] - R^{obs} \cdot T_{off} \right)$$

nGd: poisson

P. Novella, DC New Results, Moriond 2014

nH: gauss

RRM Gd-H Combined Fit

Boost stats: n-Gd + n-H candidates

Systematics	n-Gd	n-H
Reactor-On	1.7%	1.7%
Reactor-Off	30%	30%
Efficiency	1.0%	1.6% ≥

• Global fit to θ_{13} , B_{Gd} and B_{H}

$$\chi^2 = \chi^2_{Gd} + \chi^2_H + \chi^2_{pull}$$

- Systematic sources:
 - Residual v: fully correlated
 - Reactor power: fully correlated
 - If common binning
 - Detection efficiency:
 - $\rho = 0.09$: $\sigma^{unc} + \sigma^{cor}$

$$\chi^{2}_{pull} = (\frac{\alpha^{d}_{Gd-un}}{\sigma^{d}_{Gd-un}})^{2} + (\frac{\alpha^{d}_{H-un}}{\sigma^{d}_{H-un}})^{2} + (\frac{\alpha^{d}_{cor}}{\sigma^{d}_{cor}})^{2} + \sum (\frac{\alpha^{r}_{i}}{\sigma^{r}_{i}})^{2} + (\frac{\alpha^{\nu}}{\sigma_{\nu}})^{2}$$