Search for Neutrinoless Double-β Decay of 100Mo in the final NEMO-3 dataset

Stefano Torre
University College London

on behalf of the NEMO collaboration

XLIXth Rencontres de Moriond
Electroweak Interactions and Unified Theories
La Thuile, 15th-22nd March 2014
Which processes cause double beta decay?

\(\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q_{\beta\beta}, Z) \left| M^{0\nu} \right|^2 \eta^2 \)

\(\eta \) can be due to mass mechanism, V+A, majoron, SUSY, ... with different topology in the final state

S. Torre - Search for Neutrinoless Double-\(\beta \) Decay of \(^{100}\)Mo in the final NEMO-3 dataset - Moriond 2014
Measuring the Lepton Number Violating parameter

- need to know the Nuclear Matrix Element (NME)
- variation between models and isotopes
- combine measurements from as many isotopes as possible

\[
\frac{1}{T_{1/2}} = G_{\text{0}\nu}^{0\nu} (Q_{\beta\beta}, Z) \left| M_{\text{0}\nu}^{0\nu} \right|^2 \eta^2
\]

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Abundance (%)</th>
<th>(Q_{\beta\beta}) (MeV)</th>
<th>(G_{\text{0}\nu}^{0\nu}) (10^{-14} y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48Ca</td>
<td>0.19</td>
<td>4,276</td>
<td>7.15</td>
</tr>
<tr>
<td>76Ge</td>
<td>7.8</td>
<td>2,039</td>
<td>0.71</td>
</tr>
<tr>
<td>82Se</td>
<td>9.2</td>
<td>2,992</td>
<td>3.11</td>
</tr>
<tr>
<td>100Mo</td>
<td>9.6</td>
<td>3,034</td>
<td>5.03</td>
</tr>
<tr>
<td>116Cd</td>
<td>7.5</td>
<td>2,804</td>
<td>5.44</td>
</tr>
<tr>
<td>130Te</td>
<td>34.5</td>
<td>2,529</td>
<td>4.89</td>
</tr>
<tr>
<td>136Xe</td>
<td>8.9</td>
<td>2,467</td>
<td>5.13</td>
</tr>
<tr>
<td>150Nd</td>
<td>5.6</td>
<td>3,368</td>
<td>23.2</td>
</tr>
</tbody>
</table>

m_{\beta\beta} = 50 \text{ meV}

S.Torre - Search for Neutrinoless Double-β Decay of 100Mo in the final NEMO-3 dataset - Moriond 2014

NEMO3

- The particle physicist’s nuclear physics experiment.
- “Smoking gun”: complete event reconstruction for:
 - background rejection
 - signal characterization (discovery!)

Isotopes

Large quantities: 100Mo (7kg) 82Se (1 kg)
Small quantities: 116Cd 150Nd 48Ca 96Zr 130Te
All major isotopes except 76Ge and 136Xe
NEMO3

- source distributed on cylindrical surface
- 3D wire drift chamber operated in Geiger mode (6180 cells)
 - He + 4% ethyl alcohol + 1% Ar + 0.1% H$_2$O
- calorimeter made of 1940 plastic scintillators coupled to low radioactivity PMTs
- Magnetic field: 25 Gauss
- Gamma shield: iron
- Neutron shield:
 - 30cm borated water (external wall)
 - 40cm wood (top and bottom)
- Two separate runs:
 - Phase 1, “High” Rn: Feb, 2003 → Sep, 2004
Backgrounds

In addition to $\beta\beta(2\nu)$, 214Bi and 208Tl contribution

Internal Background
Backgrounds

External Background

Radio-impurities in material, γ from (n,γ), $(n,n'\gamma)$ and μ bremstrahlung

Reduction by a factor at least 100 compared to calorimeters

In addition to $\beta\beta(2\nu)$, ^{214}Bi and ^{208}Tl contribution

Internal Background

S.Torre - Search for Neutrinoless Double-β Decay of ^{100}Mo in the final NEMO-3 dataset - Moriond 2014
Backgrounds

Radio-impurities in material, γ from (n,γ), $(n,n'\gamma)$ and μ bremsstrahlung

External Background

Reduction by a factor at least 100 compare to calorimeters

In addition to $\beta\beta(2\nu)$, ^{214}Bi and ^{208}TI contribution

Internal Background

Radon Background

Radon daughter (^{214}Bi) deposited on the Source foil or near wires

Some of these backgrounds are rejected by γ, X or delayed α detection
Backgrounds measurements

External background: $e\gamma$-external

Internal 214Bi : $e\alpha(\gamma)$-events from foil

External background: e-crossing events

S. Torre - Search for Neutrinoless Double-β Decay of 100Mo in the final NEMO-3 dataset - Moriond 2014
Selection of $\beta\beta$ events

Criteria to select $\beta\beta$ events
- 2 tracks with charge < 0
- 2 PMT, each > 200 keV
- PMT-Track association
- Common vertex
- Internal hypothesis (external event rejection)
- No other isolated PMT (γ rejection)
- No delayed track (^{214}Bi rejection)

Run: 3478
Event: 6930
Date: 09/11/2004

$(\Delta\text{vertex}) = 3 \text{ cm}$
0νββ 100Mo - Final sample

NEMO-3 - 100Mo - 7 kg, 5 y

$E_{TOT} \in [2.8, 3.2]$ MeV

<table>
<thead>
<tr>
<th>Sample</th>
<th>Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>External bkgs</td>
<td>< 0.2</td>
</tr>
<tr>
<td>214Bi from 222Rn</td>
<td>5.2 ± 0.5</td>
</tr>
<tr>
<td>214Bi internal</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>208Tl internal</td>
<td>3.3 ± 0.3</td>
</tr>
<tr>
<td>$2\nu\beta\beta$</td>
<td>8.45 ± 0.05</td>
</tr>
<tr>
<td>Total expected</td>
<td>18.0 ± 0.6</td>
</tr>
</tbody>
</table>

Observed events: 15

Efficiency = 4.7%
Exposure = 34.7 kg·y

0 events observed in the range $E_{TOT} \in [3.2, 10]$ MeV

S. Torre - Search for Neutrinoless Double-β Decay of 100Mo in the final NEMO-3 dataset - Moriond 2014
0νββ 100Mo - Limits on the half-life

- modified frequentist analysis
- $E_{TOT} \in [2.0, 3.2]$ MeV
- account for statistical and systematic uncertainties and their correlations

<table>
<thead>
<tr>
<th>0νββ process</th>
<th>Stat. Only</th>
<th>Systematics</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass mechanism</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0 [0.7, 1.4]</td>
</tr>
<tr>
<td>$q_{r.h.} - l_{r.h.}$ coupling $\langle \lambda \rangle$</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5 [0.4, 0.8]</td>
</tr>
<tr>
<td>$q_{r.h.} - l_{l.h.}$ coupling $\langle \eta \rangle$</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9 [0.6, 1.3]</td>
</tr>
<tr>
<td>Majoron</td>
<td>0.050</td>
<td>0.044</td>
<td>0.039 [0.027, 0.059]</td>
</tr>
</tbody>
</table>

Systematics:
- 0νββ reconstruction efficiency: 7%
- 2νββ events in window: 0.7%
- 208Tl contamination: 10%
- 214Bi contamination: 10%

S.Torre - Search for Neutrinoless Double-β Decay of 100Mo in the final NEMO-3 dataset - Moriond 2014
0νββ - Limits @ 90% C.L. on LNV parameters

\[
\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q_{0\nu}, Z) \left| M^{0\nu} \right|^2 \eta^2
\]

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Exposure (kg·y)</th>
<th>Half life ((10^{25} \text{y})) published</th>
<th>(\langle m_\nu \rangle) (eV) published</th>
<th>(\langle m_\nu \rangle) (eV) calculated</th>
<th>(\langle \lambda \rangle) ((10^{-6})) published</th>
<th>(\langle \eta \rangle) ((10^{-8})) published</th>
<th>(\lambda'_{111}/f) ((10^{-2})) published</th>
<th>(\langle g_{ee} \rangle) ((10^{-5})) published</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{100}\text{Mo}) [1]</td>
<td>34.7</td>
<td>0.1</td>
<td>0.33 - 0.87</td>
<td>0.33 - 0.87</td>
<td>0.9 - 1.3</td>
<td>0.5 - 0.8</td>
<td>4.4 - 6.0</td>
<td>2 - 5</td>
</tr>
<tr>
<td>(^{130}\text{Te}) [2][3]</td>
<td>19.75</td>
<td>0.3</td>
<td>0.31 - 0.71</td>
<td>0.31 - 0.71</td>
<td>1.6 - 2.4</td>
<td>0.9 - 5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{136}\text{Xe}) [4][5]</td>
<td>89.5</td>
<td>1.9</td>
<td>0.14 - 0.34</td>
<td>0.14 - 0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{136}\text{Xe}) [6]</td>
<td>99.8</td>
<td>1.1</td>
<td>0.19 - 0.45</td>
<td>0.19 - 0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{76}\text{Ge}) [7]</td>
<td>21.6</td>
<td>2.1</td>
<td>0.2 - 0.4</td>
<td>0.26 - 0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{76}\text{Ge}) [8]</td>
<td>35.5</td>
<td>1.9</td>
<td>0.4</td>
<td>0.27 - 0.65</td>
<td>1.1</td>
<td>0.6</td>
<td></td>
<td>8.1</td>
</tr>
</tbody>
</table>

- \(\langle m_\nu \rangle\) limits recalculated using updated phase space and NME calculations see refs in [1] hep-ex/1311.5695
- \(f = \left(\frac{M_\tilde{\chi}}{1 \text{TeV}} \right)^2 \left(\frac{M_\tilde{\chi}}{1 \text{TeV}} \right)^{1/2}\)
2νββ 100Mo Phase 2 data - 7kg x 4 years

- 700000 two-electron events from 100Mo foils
- $S/B = 76$
- $\varepsilon(2\nu2\beta) = 0.043$
- $T_{1/2}(2\nu2\beta) = [7.16 \pm 0.01\text{(stat)} \pm 0.54\text{(syst)}] \times 10^{18} \text{y} \quad \text{PRELIM.}$

Consistent with the published NEMO-3 result obtained with Phase 1 data:
$T_{1/2} = [7.11 \pm 0.02\text{(stat)} \pm 0.54\text{(syst)}] \times 10^{18} \text{y}$

S. Torre - Search for Neutrinoless Double-β Decay of 100Mo in the final NEMO-3 dataset - Moriond 2014
100Mo 2β2ν decay to excited states

Decays to excited states have several photons in final state

With NEMO3 after 7kg·yr of exposure (Phase1):

\[
T_{1/2}^{2\nu}(0^+ \rightarrow 0^+_1) = 5.7^{+1.3}_{-0.9} \pm 0.8 \, \text{(stat)} \times 10^{20} \, \text{y} \\
T_{1/2}^{0\nu}(0^+ \rightarrow 0^+_1) > 8.9 \times 10^{22} \, \text{y} \, @ \, 90\% \, \text{C.L.} \\
T_{1/2}^{2\nu}(0^+ \rightarrow 2^+_1) > 1.1 \times 10^{21} \, \text{y} \, @ \, 90\% \, \text{C.L.} \\
T_{1/2}^{0\nu}(0^+ \rightarrow 2^+_1) > 1.6 \times 10^{23} \, \text{y} \, @ \, 90\% \, \text{C.L.} \\
\]

Nuclear Physics A 925 (2014) 25-36
- Measure the γ lines using low background HPGe detector
- 2518g of 100Mo in metallic foils from NEMO3 detector
- Data collected over 2288 hours
- Use 238U, 152Eu and 138La calibrations source: data/MC discrepancy < 7%

\[
T_{1/2}^{2\nu}(0^+ \rightarrow 0^+_1) = 7.5 \pm 0.6 \, \text{(stat)} \pm 0.6 \, \text{(syst)} \times 10^{20} \, \text{y} \\
T_{1/2}^{2\nu}(0^+ \rightarrow 2^+_1) > 2.5 \times 10^{21} \, \text{y} \, @ \, 90\% \, \text{C.L.} \\
\]

NEW RESULT

best limits on all other transitions to excited states were set

\[
M_{2\nu}(\text{g.s.})/M_{2\nu}(0^+_1) \sim 1.25 \quad \text{independently on the NME chosen}
\]
2νββ Results

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Mass (g)</th>
<th>$Q_{\beta\beta}$ (keV)</th>
<th>$T_{1/2}(2\nu)$ (10^{19} yrs)</th>
<th>S/B</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>82Se</td>
<td>932</td>
<td>2996</td>
<td>9.6 ± 1.0</td>
<td>4</td>
<td>World’s best!</td>
<td>Phys. Rev. Lett. 95 (2005) 182302</td>
</tr>
<tr>
<td>116Cd</td>
<td>405</td>
<td>2809</td>
<td>2.8 ± 0.3</td>
<td>10</td>
<td>World’s best!</td>
<td>Phys. Rev. C 80, 032501 (2009)</td>
</tr>
<tr>
<td>150Nd</td>
<td>37</td>
<td>3367</td>
<td>0.90 ± 0.07</td>
<td>2.7</td>
<td>World’s best!</td>
<td>Nucl. Phys. A 847 (2010) 168</td>
</tr>
<tr>
<td>96Zr</td>
<td>9.4</td>
<td>3350</td>
<td>2.35 ± 0.21</td>
<td>1</td>
<td>World’s best!</td>
<td></td>
</tr>
<tr>
<td>48Ca</td>
<td>7</td>
<td>4271</td>
<td>4.4 ± 0.6</td>
<td>6.8 (h.e.)</td>
<td>World’s best!</td>
<td></td>
</tr>
<tr>
<td>100Mo</td>
<td>6914</td>
<td>3034</td>
<td>0.71 ± 0.05</td>
<td>80</td>
<td>World’s best!</td>
<td>Phys. Rev. Lett. 95 (2005) 182302</td>
</tr>
<tr>
<td>130Te</td>
<td>454</td>
<td>2533</td>
<td>70 ± 14</td>
<td>1</td>
<td>First direct detection!!!</td>
<td>Phys. Rev. Lett. 107, 062504 (2011)</td>
</tr>
</tbody>
</table>

First direct observation: 7.7σ significance

Indirect observations:
- $\sim 2.7 \times 10^{21}$ yrs in 10^9 yr old rocks
- $\sim 8 \times 10^{20}$ yrs in 10^7-10^8 yr old rocks

Indication from MIBETA Coll in isotopically enriched crystals: 6.1 ± 1.4 (st) $+2.9$-3.5 (sy) $\times 10^{20}$ yrs
Conclusions

• The unique design of NEMO3 allowed for
 • unique background rejection capabilities
 • measurement of the details of $2\nu\beta\beta$ in several isotopes

• Search of $0\nu\beta\beta$ of 100Mo in the full data set has lead to the best limit on the half-life of this process
 • limits on the effective Majorana neutrino mass are in the range currently constrained using other isotopes
 • world best limits on several other mechanisms are also provided
Backup
Double-Beta Decay

2-Neutrino Double Beta Decay
- Lepton number conserved.
- Allowed in Standard Model.
- Rate $O(G_F^2)$

0-Neutrino Double Beta Decay
- Lepton number violation:
- Forbidden in Standard Model: $\Delta L = 2$
- Rate($0\nu\beta\beta$) \ll Rate($2\nu\beta\beta$)
Double-Beta Decay : Basic Signature

Measure the summed electron energy and compare to the energy of the transition:

\[\frac{(E_1 + E_2)}{Q_{\beta\beta}} \in [0, Q_{\beta\beta}] \]

\[\frac{(E_1 + E_2)}{Q_{\beta\beta}} \approx 1 \]

\[\otimes \text{ resolution} \]
NEMO3

LSM Modane, France
(Tunnel Frejus, depth of ~4,800 mwe)

S. Torre - Search for Neutrinoless Double-β Decay of 100Mo in the final NEMO-3 dataset - Moriond 2014
Which Isotopes Can Double-Beta Decay?

Candidate isotopes:

<table>
<thead>
<tr>
<th>Isotope</th>
<th>$Q_{\beta\beta}$ (MeV)</th>
<th>Abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48Ca</td>
<td>4.276</td>
<td>0.19</td>
</tr>
<tr>
<td>76Ge</td>
<td>2.039</td>
<td>7.8</td>
</tr>
<tr>
<td>82Se</td>
<td>2.992</td>
<td>9.2</td>
</tr>
<tr>
<td>96Zr</td>
<td>3.348</td>
<td>2.800</td>
</tr>
<tr>
<td>100Mo</td>
<td>3.034</td>
<td>9.6</td>
</tr>
<tr>
<td>110Pd</td>
<td>2.004</td>
<td>11.800</td>
</tr>
<tr>
<td>116Cd</td>
<td>2.804</td>
<td>7.5</td>
</tr>
<tr>
<td>124Sn</td>
<td>2.530</td>
<td>5.600</td>
</tr>
<tr>
<td>130Te</td>
<td>2.529</td>
<td>34.5</td>
</tr>
<tr>
<td>136Xe</td>
<td>2.467</td>
<td>8.9</td>
</tr>
<tr>
<td>150Nd</td>
<td>3.368</td>
<td>5.6</td>
</tr>
</tbody>
</table>

106Cd is a double-EC candidate!

More energetic decay: easier to separate from background. Enrichment often possible, always expensive!
Calibrations

- 207Bi sources
 - position of 1682 keV peak used for energy scale uncertainty
 - data-MC discrepancy < 0.2%
 - energy scale known @ 2% or PMT is removed
 - systematics on $2e^-$ reconstruction efficiency: 7%
- 232U sources: systematics on the reconstruction of 208Tl in the foil: 10%
- gain variations are monitored during the day using light injection system, PMT showing large fluctuations are rejected

S.Torre - Search for Neutrinoless Double-β Decay of 100Mo in the final NEMO-3 dataset - Moriond 2014
Background: Rn activity

Measurements of ^{222}Rn activity in the gas of tracker (mBq/m3)

Fraction of non-α events: 0.59±1.33%

$T_{1/2} = 162.9\mu$s

$^{214}\text{Bi} \rightarrow ^{214}\text{Po} (164 \mu s) \rightarrow ^{210}\text{Pb}$
Internal Backgrounds measurements

Internal background from γ-emitters(208Tl,207Bi,...): (eγ,e$\gamma\gamma$,e$\gamma\gamma\gamma$)-events

Internal background from β-emitters(234mPa,40K,90Y,...): 1e-events
Search for $0\nu\beta\beta$ with ^{82}Se

^{82}Se, Phase 1, 1.0 year

^{82}Se, Phase 2, 3.5 years

$[2.6, 3.2]$ MeV:

$\varepsilon(0\nu) = 0.105$
Tot MC= 3.8 ± 0.5 , Data: 4 events
MC $2\nu\beta\beta = 0.4 \pm 0.1$
MC radon = 2.4 ± 0.4
MC int bkg=1.0 ± 0.2 ($^{214}\text{Bi}=0.55, ^{208}\text{Tl}=0.42$)

$[2.6, 3.2]$ MeV in 4.5 years 14 events observed, 11.1\pm1.3 expected

S. Torre - Search for Neutrinoless Double-β Decay of ^{100}Mo in the final NEMO-3 dataset - Moriond 2014
^{100}Mo $2\beta 2\nu$ decay to excited states

Event topology:

- 0^+_1: $2e^- + 2g$ in time & energy and TOF cuts
- 2^+_1: $2e^- + 1g$ in time & energy and TOF cuts

$T_{1/2}^{2\nu}(0^+ \rightarrow 0^+_1) = 5.7^{+1.3}_{-0.9} \text{(stat)} \pm 0.8 \text{(syst)} \times 10^{20}$ y

$T_{1/2}^{0\nu}(0^+ \rightarrow 0^+_1) < 8.9 \times 10^{22}$ y @ 90% C.L.

$T_{1/2}^{2\nu}(0^+ \rightarrow 2^+_1) > 1.1 \times 10^{21}$ y @ 90% C.L.

$T_{1/2}^{0\nu}(0^+ \rightarrow 2^+_1) > 1.6 \times 10^{23}$ y @ 90% C.L.

SSD/HSD $2\nu\beta\beta$ (100Mo)

HSD, higher levels contribute to the decay

SSD, 1^+ level dominates in the decay

(Abad et al., 1984, *Ann. Fis.* A 80, 9)

$\chi^2/\text{ndf} = 254 / 42$

$k_g E_1 + E_2 > 2\text{ MeV}$

Real data

Electron energy distribution in $2\beta2\nu$ decay of 100Mo is in favour of Single State Dominance (SSD)

$5.01 \text{ kg} \cdot \gamma$

$E_1 + E_2 > 2\text{ MeV}$

Real data

Single electron spectrum different between SSD and HSD

$\chi^2/\text{ndf} = 42,3 / 42$

$k_g E_1 + E_2 > 2\text{ MeV}$

Real data