Fermion Masses and Mixing from a Minimum Principle

17/03/2014

Rodrigo Alonso

Work in collaboration with M.B. Gavela, L. Merlo, D. Hernandez, G. Isidori, L. Maiani, S. Rigolin

why are masses so separated from one another?

why are masses so separated from one another?

lightness of neutrinos due to a Majorana character?

why is the mixing pattern so different?

why is the mixing pattern so different?

Maybe because of the Majorana Character?

The Standard Theory

The Standard Theory

Neutrino Masses: type I seesaw Addition of a gauge singlet $\frac{SU(3)_c \quad SU(2)_L \quad U(1)_Y}{N_R \quad 1 \quad 1 \quad 0} \xrightarrow{H}_{L_i} \xrightarrow{N_R}_{L_i}$

with the only "bare" and Majorana mass allowed

$$\mathscr{L}_{seesaw} = - \overline{\ell}_L Y_{\nu} \tilde{H} N_R - \overline{N}_R^c \frac{M}{2} N_R + h.c.$$

after EWSB and for vY<<M

$$m_
u = Y_
u rac{v^2}{2M} Y_
u^T$$

 $Y_{\nu} \sim 1 \ M \sim 10^{15} \text{GeV}$ $Y_{\nu} \sim 10^{-6} \ M \sim 10^{3} \text{GeV}$

The largest global symmetry that the free Lagrangian can display:

$$\mathscr{L}_{free} = i \sum_{\psi = Q_L}^{D_R} \overline{\psi} D \!\!\!/ \psi$$

that is:

 $U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$ $\mathcal{G}^q_{\mathcal{F}}$ Quarks

[Georgi, Chivukula, 1987 D'Ambrosio, Giudice, Isidori, Strumia, 2002]

The largest global symmetry that the free Lagrangian can display:

$$\mathscr{L}_{free} = i \sum_{\psi = Q_L}^{D_R} \overline{\psi} D \!\!\!/ \psi$$

that is:

 $U(3)_{Q_L} imes U(3)_{U_R} imes U(3)_{D_R}$ $\mathcal{G}^q_{\mathcal{F}}$ Quarks

The largest global symmetry that the free Lagrangian can display:

$$\mathscr{L}_{free} = i \sum_{\psi = Q_L}^{N_R} \overline{\psi} D \!\!\!/ \psi$$

that is:

 $U(3)_{Q_L} imes U(3)_{U_R} imes U(3)_{D_R}$ $\mathcal{G}^q_{\mathcal{F}}$ Quarks

The largest global symmetry that the free Lagrangian can display:

$$\mathscr{L}_{free} = i \sum_{\psi=Q_L}^{N_R} \overline{\psi} D \psi - \frac{1}{2} \overline{N}_R^c M N_R,$$

that is:

 $U(3)_{Q_L} imes U(3)_{U_R} imes U(3)_{D_R}$ $\mathcal{G}^q_{\mathcal{F}}$ Quarks

The largest global symmetry that the free Lagrangian can display:

$$\mathscr{L}_{free} = i \sum_{\psi=Q_L}^{N_R} \overline{\psi} D \psi - \frac{1}{2} \overline{N}_R^c M N_R,$$

that is:

 $\begin{array}{cc} U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R} \times & U(3)_{\ell_L} \times U(3)_{E_R} \times O(3)_{N_R} \\ \mathcal{G}_{\mathcal{F}}^q & \mathsf{Quarks} & \mathcal{G}_{\mathcal{F}}^l & \mathsf{Leptons} \end{array}$

Flavour Symmetry Breaking

...which we assume spontaneously broken to generate the Yukawa couplings

Y

[C. D. Froggat, H. B. Nielsen Berezhiani, Rosi, Cabibbo, Maiani Michel, Radicati ...]

Flavour Fields

...which we assume spontaneously broken to generate the Yukawa couplings

Flavour Field's Scalar Potential

The potential shall respect

• Gauge invariance \mathcal{G}

• Flavour invariance $\mathcal{G}_{\mathcal{F}}$

$V(\Phi) = V(I(\Phi))$

This means that the potential depends on invariant combinations of the fields:"*I*"

Minimization

a variational principle fixes the vevs of the Fields

 $\delta V = 0$

$$\sum_{j} \frac{\partial I_{j}}{\partial y_{i}} \frac{\partial V}{\partial I_{j}} \equiv J_{ij} \frac{\partial V}{\partial I_{j}} = 0 \,,$$

This is an homogenous linear equation;

study rank of the Jacobian $J_{ij} = \partial I_j / \partial y_i$,

Natural Breaking Patterns

$$\det\left(J\right)=0$$

[Cabibbo, Maiani, 1969]

identifies especial solutions with unbroken symmetry \mathcal{H}

$$\mathcal{G} \to \mathcal{H}$$

The "most" natural ones are the maximal subgroups guaranteed a extremum point in any function [Michel, Radicati, 1969]

e.g. $SU(5) \rightarrow SU(3) \times SU(2) \times U(1)$ [Glashow, Georgi, 1974]

Quarks

Bi-fundamental Flavour Fields

$$I_{U} = \operatorname{Tr} \begin{bmatrix} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \end{bmatrix}, \qquad I_{D} = \operatorname{Tr} \begin{bmatrix} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \end{bmatrix}, I_{U^{2}} = \operatorname{Tr} \begin{bmatrix} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{2} \end{bmatrix}, \qquad I_{D^{2}} = \operatorname{Tr} \begin{bmatrix} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \end{bmatrix}, I_{U^{3}} = \operatorname{Tr} \begin{bmatrix} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{3} \end{bmatrix}, \qquad I_{D^{3}} = \operatorname{Tr} \begin{bmatrix} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{3} \end{bmatrix}, I_{U,D} = \operatorname{Tr} \begin{bmatrix} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \end{bmatrix}, \qquad I_{U,D^{2}} = \operatorname{Tr} \begin{bmatrix} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \end{bmatrix}, I_{U^{2},D} = \operatorname{Tr} \begin{bmatrix} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \end{bmatrix}, \qquad I_{(U,D)^{2}} = \operatorname{Tr} \begin{bmatrix} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \end{bmatrix}.$$

eigenvalues and mixing

[Feldmann, Jung, Mannel; Jenkins, Manohar]

Jacobian Analysis: Mixing

$$\det (J_{UD}) = (y_u^2 - y_t^2) (y_t^2 - y_c^2) (y_c^2 - y_u^2)$$
$$(y_d^2 - y_b^2) (y_b^2 - y_s^2) (y_s^2 - y_d^2)$$
$$\times |V_{ud}| |V_{us}| |V_{cd}| |V_{cs}|$$

the rank is reduced the most for:

V_{CKM}= PERMUTATION

no mixing: reordering of states

Quark Natural Flavour Pattern

Summarizing, a possible and natural breaking pattern arises:

$$\mathscr{G}^q_{\mathcal{F}}$$
 : $U(3)^3 \to U(2)^3 \times U(1)$

a hierarchical mass spectrum without mixing

$${\mathcal Y}_D = \Lambda_f \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & y_b \end{array}
ight) \,, \qquad \qquad {\mathcal Y}_U = \Lambda_f \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & y_t \end{array}
ight) \,,$$

a good approximation to the observed Yukawas to order $(\lambda_c)^2$

[RA, Gavela, Merlo, Rigolin]

Leptons

Bi-fundamental Flavour Fields

Physical parameters =Independent Invariants

The better suited parametrization is the bi-unitary

$$\mathcal{Y}_{\nu} = \Lambda_f \mathcal{U}_L \mathbf{y}_{\nu} \mathcal{U}_R, \qquad \mathcal{Y}_E = \Lambda_f \mathbf{y}_E;$$

$$\mathcal{U}_L \mathcal{U}_L^{\dagger} = 1, \quad \mathcal{U}_R \mathcal{U}_R^{\dagger} = 1,$$

the connection with neutrino masses being

$$U_{PMNS} \mathbf{m}_{\nu} U_{PMNS}^T = rac{v^2}{2M} \mathcal{U}_L \mathbf{y}_{\nu} \mathcal{U}_R \mathcal{U}_R^T \gamma_{\nu} \mathcal{U}_L^T$$

$$\begin{split} & \text{Leptons} \\ \hline & I_E = \text{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^{\dagger} \right], & I_\nu = \text{Tr} \left[\mathcal{Y}_\nu \mathcal{Y}_\nu^{\dagger} \right], \\ & I_{E^2} = \text{Tr} \left[\left(\mathcal{Y}_E \mathcal{Y}_E^{\dagger} \right)^2 \right], & I_{\nu^2} = \text{Tr} \left[\left(\mathcal{Y}_\nu \mathcal{Y}_\nu^{\dagger} \right)^2 \right], \\ & I_{E^3} = \text{Tr} \left[\left(\mathcal{Y}_E \mathcal{Y}_E^{\dagger} \right)^3 \right], & I_{\nu^3} = \text{Tr} \left[\left(\mathcal{Y}_\nu \mathcal{Y}_\nu^{\dagger} \right)^3 \right], \\ \hline & I_{L^3} = \text{Tr} \left[\mathcal{Y}_\nu \mathcal{Y}_\nu^{\dagger} \mathcal{Y}_E \mathcal{Y}_E^{\dagger} \right], \\ & I_{L^3} = \text{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^{\dagger} \left(\mathcal{Y}_\nu \mathcal{Y}_\nu^{\dagger} \right)^2 \right], \\ & I_{L^4} = \text{Tr} \left[\left(\mathcal{Y}_\nu \mathcal{Y}_\nu^{\dagger} \mathcal{Y}_E \mathcal{Y}_E^{\dagger} \right)^2 \right], \\ \hline & U_L \text{ and eigenvalues} \\ \hline & U_L \text{ and eigenvalues} \end{split}$$

Jacobian Analysis: Mixing

$$\det \left(J_{\mathcal{U}_L} \right) = \left(y_{\nu_1}^2 - y_{\nu_2}^2 \right) \left(y_{\nu_2}^2 - y_{\nu_3}^2 \right) \left(y_{\nu_3}^2 - y_{\nu_1}^2 \right) \\ \left(y_e^2 - y_{\mu}^2 \right) \left(y_{\mu}^2 - y_{\tau}^2 \right) \left(y_{\tau}^2 - y_e^2 \right) \left| \mathcal{U}_L^{e1} \right| \left| \mathcal{U}_L^{e2} \right| \left| \mathcal{U}_L^{\mu 1} \right| \left| \mathcal{U}_L^{\mu 2} \right| \,.$$

same as for V_{CKM}

$$O(3) \text{ vs } U(3)$$

$$\det J_{\mathcal{U}_R} = (y_{\nu_1}^2 - y_{\nu_2}^2)^3 (y_{\nu_2}^2 - y_{\nu_3}^2)^3 (y_{\nu_3}^2 - y_{\nu_1}^2)^3 / (\mathcal{U}_R \mathcal{U}_R^T)_{11} || (\mathcal{U}_R \mathcal{U}_R^T)_{22} || (\mathcal{U}_R \mathcal{U}_R^T)_{12} |$$

the rank is reduced the most for $\mathcal{U}_R \mathcal{U}_R^T$ being a permutation

Jacobian Analysis: Mixing

...which is now **not** trivial mixing...

$$rac{v^2}{M} \left(egin{array}{ccc} y_{
u_1}^2 & 0 & 0 \ 0 & 0 & y_{
u_2} y_{
u_3} \ 0 & y_{
u_2} y_{
u_3} & 0 \end{array}
ight) = U_{PMNS} \left(egin{array}{ccc} m_{
u_1} & 0 & 0 \ 0 & m_{
u_2} & 0 \ 0 & 0 & m_{
u_2} \end{array}
ight) U_{PMNS}^T \,,$$

...but maximal mixing

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\\ 0 & -\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix}, \qquad m_{\nu_2} = \frac{v^2}{M} y_{\nu_2} y_{\nu_3}, \quad m_{\nu_1} = \frac{v^2}{M} y_{\nu_1}^2.$$

+degeneracy and maximal Majorana phase

[RA, Gavela, Hernandez, Merlo, Rigolin RA, Gavela Isidori, Maiani]

Lepton Natural Flavour Pattern

Summarizing, a possible and natural breaking pattern:

 $\mathscr{G}^l_{\mathcal{F}}$: $U(3)^2 \times O(3) \to U(2) \times U(1)$

brings along hierarchical charged leptons

$${\mathcal Y}_E = \Lambda_f \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & y_ au \end{array}
ight), \qquad {\mathcal Y}_
u = \Lambda_f \left(egin{array}{ccc} y_{
u_1} & 0 & 0 \ 0 & y_{
u_2}/\sqrt{2} & -iy_{
u_2}/\sqrt{2} \ 0 & y_{
u_3}/\sqrt{2} & iy_{
u_3}/\sqrt{2} \end{array}
ight),$$

and (at least) two degenerate neutrinos and maximal angle and Majorana phase

Perturbations can produce a second large angle

if the three neutrinos are quasidegenerate, perturbations:

 $U_{PMNS}\begin{pmatrix} m_0 & 0 & 0 \\ 0 & m_0 & 0 \\ 0 & 0 & m_0 \end{pmatrix} U_{PMNS}^T = \frac{y_{\nu}v^2}{M} \begin{pmatrix} 1+\delta+\sigma & \epsilon+\eta & \epsilon-\eta \\ \epsilon+\eta & \delta+\kappa & 1 \\ \epsilon-\eta & 1 & \delta-\kappa \end{pmatrix}$ produce a second large angle and a perturbative one together with mass splittings

 $\theta_{23}\simeq \pi/4$, θ_{12} large , $\theta_{13}\simeq\epsilon$

Majorana Phases $(e^{i\alpha}, 1, i)$

degenerate spetrum

accommodation of angles requires degenerate spectrum at reach in future neutrinoless double β exps.!

accommodation of angles requires degenerate spectrum at reach in future neutrinoless double β exps.!

Where do the differences in Mixing originate?

From the MAJORANA vs DIRAC nature of fermions

Where do the differences in Mixing originate?

From the MAJORANA vs DIRAC nature of fermions

Backup

Boundaries Exhibit Unbroken Symmetry

Extra-Dimensions Example

<u>The smallest boundaries are</u> <u>extremal points of any function</u> [Michel, Radicati, 1969]

Boundaries

for a reduced rank of the Jacobian, det(J) = 0there exists (at least) a direction δy_i in which a variation of the field variables does not vary the invariants $\delta I_j = \sum_i \frac{\partial I_j}{\partial y_i} \, \delta y_i = 0$

that is a Boundary of the *I-manifold*

[Cabibbo, Maiani, 1969]