
High SUSY scale and a few-parameter description of the scalar sector

Jérémie Quevillon, LPT Orsay

Rencontres de Moriond EW 2014, La Thuile, March 21st 2014

A. Djouadi, JQ, arXiv:1304.1787

A. Djouadi, L. Maiani, G. Moreau, A. Polosa, JQ, V. Riquer, arXiv:1307.5205

Post-Higgs MSSM

The post–Higgs MSSM scenario :

- observation of the lighter *h* boson at a mass of \approx 125 GeV.
- non-observation of superparticles at the LHC.

MSSM \Rightarrow SUSY-breaking scale rather high, $M_S \gtrsim 1$ TeV.

• $M_h \approx 125$ GeV fixes the dominant radiative corrections that enter the MSSM Higgs boson masses \Rightarrow the Higgs sector can be described by only 2 free parameters (good approximation).

2 Main phenomenological consequence of these high M_S values :

- reopen the low tan β region, tan β ≤ 3–5, which was for a long time buried under the LEP constraint on the lightest h mass when a low SUSY scale was assumed.
- The heavier MSSM neutral H/A states can be searched for in a variety of interesting final states.

We perform a fit using the LHC data in a model independent way.

・ロト ・ 同ト ・ ヨト ・ ヨト

In the MSSM to break the electroweak symmetry one need 2 doublets of complex scalar fields :

$$H_d = \left(\begin{array}{c} H_d^0 \\ H_d^- \end{array}\right) \text{ with } Y_{H_d} = -1 \ , \ H_u = \left(\begin{array}{c} H_u^+ \\ H_u^0 \end{array}\right) \text{ with } Y_{H_u} = +1$$

The tree-level masses of the CP-even h and H bosons depend on M_A , tan β and M_Z .

However, many parameters of the MSSM such as the SUSY scale $M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$, the stop/sbottom trilinear couplings $A_{t/b}$ or the higgsino mass μ enter M_h and M_H through radiative corrections.

In the basis (H_d, H_u) , the CP-even Higgs mass matrix can be written as:

$$M_{S}^{2} = M_{Z}^{2} \begin{pmatrix} c_{\beta}^{2} & -s_{\beta}c_{\beta} \\ -s_{\beta}c_{\beta} & s_{\beta}^{2} \end{pmatrix} + M_{A}^{2} \begin{pmatrix} s_{\beta}^{2} & -s_{\beta}c_{\beta} \\ -s_{\beta}c_{\beta} & c_{\beta}^{2} \end{pmatrix} + \begin{pmatrix} \Delta \mathcal{M}_{11}^{2} & \Delta \mathcal{M}_{12}^{2} \\ \Delta \mathcal{M}_{12}^{2} & \Delta \mathcal{M}_{22}^{2} \end{pmatrix}$$

where we have introduced the radiative corrections by a 2 \times 2 matrix ΔM_{ii}^2 .

・ロト ・ 同ト ・ ヨト ・ ヨト

The neutral scalar mass matrix The hMSSM

One can then derive the neutral CP even Higgs boson masses and the mixing angle α that diagonalises the *h*, *H* states, $H = \cos \alpha H_d^0 + \sin \alpha H_u^0 \& h = -\sin \alpha H_d^0 + \cos \alpha H_u^0$

$$\begin{aligned} &M_{h/H}^2 &= f_{h/H}(M_A, \tan\beta, \Delta\mathcal{M}_{11}, \Delta\mathcal{M}_{12}, \Delta\mathcal{M}_{22}) \\ &\tan\alpha &= f_\alpha(M_A, \tan\beta, \Delta\mathcal{M}_{11}, \Delta\mathcal{M}_{12}, \Delta\mathcal{M}_{22}) \end{aligned}$$

 M_h should be an input now...

$$\begin{split} &\Delta \mathcal{M}^2_{22} \text{ involves the by far dominant stop-top sector correction,} \\ &\Delta \mathcal{M}^2_{22} \gg \Delta \mathcal{M}^2_{11}, \Delta \mathcal{M}^2_{12}. \end{split}$$

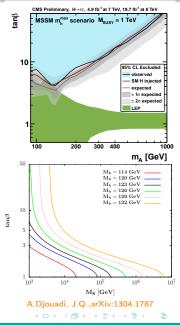
One can simply trade ΔM_{22}^2 (M_S) for the by now known M_h using

$$\Delta \mathcal{M}_{22}^2 = \frac{M_h^2 (M_A^2 + M_Z^2 - M_h^2) - M_A^2 M_Z^2 c_{2\beta}^2}{M_Z^2 c_{\beta}^2 + M_A^2 s_{\beta}^2 - M_h^2}$$

In this case, one can simply write M_H and α in terms of M_A , tan β and M_h :

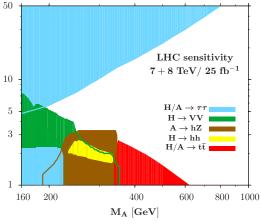
$$\begin{split} \mathbf{M}_{H}^{2} &= \frac{(M_{A}^{2} + M_{Z}^{2} - M_{h}^{2})(M_{Z}^{2}c_{\beta}^{2} + M_{A}^{2}s_{\beta}^{2}) - M_{A}^{2}M_{Z}^{2}c_{2\beta}^{2}}{M_{Z}^{2}c_{\beta}^{2} + M_{A}^{2}s_{\beta}^{2} - M_{h}^{2}}\\ \mathbf{M}_{Z}^{2}c_{\beta}^{2} + M_{A}^{2}s_{\beta}^{2} - M_{h}^{2} \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト


Motivation Present constraints on the MSSM parameter space

• Caveat : ATLAS & CMS constraint apply for a specific benchmark : $X_t/M_S = \sqrt{6}$ and $M_S = 1$ TeV (the m_h^{max} scenario).

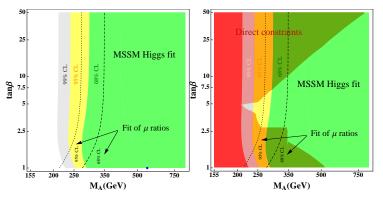
• But we can be more relaxed: with $M_S \gg M_Z$, tan $\beta \approx 1$ could be allowed!


⇒ Let's reopen the low tan β regime and heavy Higgs searches, but in a benchmark independent approach (hMSSM).

Motivation Present constraints on the MSSM parameter space

The main search channels for the H/A states :

- The $H/A \rightarrow \tau \tau$ channel (CMS)
- The $H \rightarrow WW, ZZ$ channels (CMS)
- The $\textbf{A} \rightarrow \textbf{Z}\textbf{h}$ channel (ATLAS & CMS)
- The $H \rightarrow hh$ channel (estimate)
- The $H/A \rightarrow t\bar{t}$ channels (estimate derived from ATLAS & CMS)


A.Djouadi, J.Q., arXiv:1304.1787

(日) (同) (三) (三)

 $\tan \beta$

If we neglect direct corrections to the h couplings, one can perform a fit of the Higgs signal strengths in the plane [tan β , M_A] by using the expressions defining the hMSSM:

The best-fit point : (tan β = 1 and M_A = 557 GeV) or (M_H = 580 GeV, $M_{H^{\pm}}$ = 563 GeV, α = -0.837 rad).

Djouadi, Maiani, Moreau, Polosa, JQ, Riquer, arXiv:1307.5205

We also superimpose on these indirect limits, the direct constraints on the heavy H/A boson searches performed by ATLAS and CMS.

Conclusion :

• We have discussed the MSSM that we seem to have after the discovery of the Higgs boson at the LHC.

 \Rightarrow the MSSM Higgs sector can be described by only (tan β, M_A) if the information $M_h{=}125$ GeV is used.

• $M_h \approx 125$ GeV and the non–observation of SUSY particles, seems to indicate that the soft–SUSY breaking scale might be large.

 \Rightarrow We have considered the production of the heavier H,A bosons of the MSSM at the LHC, focusing on the low tan β regime.

• To describe the *h* properties when the direct radiative corrections are also important, we need the 3 couplings c_t, c_b and c_V .

 \Rightarrow If we neglect them, the best fit point turns out to be at low tan β , tan $\beta \approx 1$, and with a not too high CP-odd Higgs mass, $M_A \approx 560$ GeV.

 $\bullet\,$ The phenomenology of the low $\tan\beta$ regime is quite interesting and it will be accessible at the next LHC run.

Bonus slides

(ロ) (部) (E) (E)

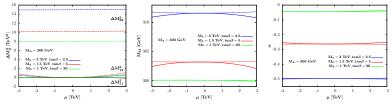
∃ 990

• Knowing $[\tan \beta, M_A]$ and fixing $M_h = 125$ GeV, the couplings of the Higgs bosons can be derived, including the generally dominant radiative corrections that enter in the MSSM Higgs masses :

$$c_V^0 = \sin(eta - lpha) \;, \;\; c_t^0 = rac{\coslpha}{\sineta} \;, \;\; c_b^0 = -rac{\sinlpha}{\coseta}$$

- However, there are also direct radiative corrections to the Higgs couplings not contained in the mass matrix. These can alter this simple picture!
- If large direct corrections \Rightarrow 3 independent *h* couplings : $c_c = c_t, c_\tau = c_b$ and $c_V = c_V^0$.
- To study the *h* state at the LHC, we define the effective Lagrangian :

$$\mathcal{L}_{h} = c_{V} g_{hWW} h W_{\mu}^{+} W^{-\mu} + c_{V} g_{hZZ} h Z_{\mu}^{0} Z^{0\mu} - c_{t} y_{t} h \bar{t}_{L} t_{R} - c_{t} y_{c} h \bar{c}_{L} c_{R} - c_{b} y_{b} h \bar{b}_{L} b_{R} - c_{b} y_{\tau} h \bar{\tau}_{L} \tau_{R} + \text{h.c.}$$

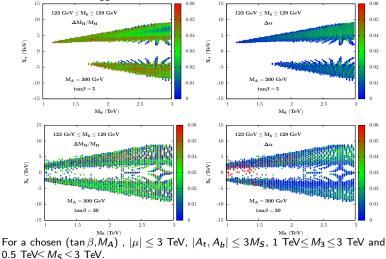

• We fit the Higgs signal strengths : $\mu_{\mathbf{X}} \simeq \frac{\sigma(\mathbf{pp} \rightarrow \mathbf{h}) \times \mathrm{BR}(\mathbf{h} \rightarrow \mathbf{XX})}{\sigma(\mathbf{pp} \rightarrow \mathbf{h})_{\mathrm{SM}} \times \mathrm{BR}(\mathbf{h} \rightarrow \mathbf{XX})_{\mathrm{SM}}}$

Best-fit value : $c_t = 0.89$, $c_b = 1.01$ and $c_V = 1.02$ (ATLAS & CMS data).

We first consider the radiative corrections when the subleading contributions proportional to μ , $A_{t/b}$ are included in the form of : Degrassi, Slavich, Zwirner, 2001; Carena, Haber, 2003

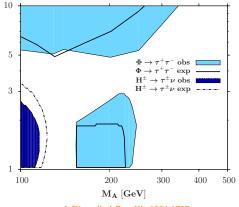
$$\begin{split} \Delta \mathcal{M}_{11}^2 &= -\frac{v^2 \sin^2 \beta}{32\pi^2} \bar{\mu}^2 \Big[x_t^2 \lambda_t^4 (1 + c_{11}\ell_s) + a_b^2 \lambda_b^4 (1 + c_{12}\ell_s) \Big] \\ \Delta \mathcal{M}_{12}^2 &= -\frac{v^2 \sin^2 \beta}{32\pi^2} \bar{\mu} \Big[x_t \lambda_t^4 (6 - x_t a_t) (1 + c_{31}\ell_s) - \bar{\mu}^2 a_b \lambda_b^4 (1 + c_{32}\ell_s) \Big] \\ \Delta \mathcal{M}_{22}^2 &= \frac{v^2 \sin^2 \beta}{32\pi^2} \Big[6 \lambda_t^4 \ell_s (2 + c_{21}\ell_s) + x_t a_t \lambda_t^4 (12 - x_t a_t) (1 + c_{21}\ell_s) - \bar{\mu}^4 \lambda_b^4 (1 + c_{22}\ell_s) \Big] \end{split}$$

We calculate "approximate" and "exact" M_H and α values for $M_h = 126 \pm 3$ GeV.



• Even for large μ , $\Delta M_H/M_H < 0.5\%$ and $\Delta lpha \lesssim 0.015$.

 \Rightarrow The approximation of determining the parameters M_H and α from tan β , M_A and the value of M_h is extremely good.


< 🗇 🕨

To check more thoroughly the impact of the subleading corrections $\Delta \mathcal{M}_{11}^2, \Delta \mathcal{M}_{12}^2$: we perform a scan of the MSSM parameter space with the full two–loop radiative corrections to the Higgs sector :

Constraints from the heavier Higgs searches at high $\tan \beta$:

- CMS $H/A \rightarrow \tau \tau$ analysis : constraint very restrictive for $M_A \lesssim 250$ GeV, excludes tan $\beta \gtrsim 5$.
- Caveat : ATLAS&CMS constraint apply for a specific benchmark : $X_t/M_S = \sqrt{6}$ and $M_S = 1$ TeV.
- Exclusion limit can be obtained in any MSSM scenario, CMS search limit is effective and excludes low tan β.

A.Djouadi, J.Q.,arXiv:1304.1787

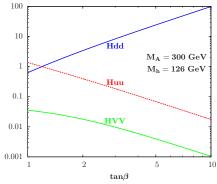
・ロト ・ 同ト ・ ヨト ・ ヨト

 \rightarrow Low tan β areas, thought to be buried under the LEP2 exclusion bound on M_h , are now open territory for heavy MSSM Higgs hunting!

 \rightarrow This can be done not only in these 2 channels but also in a plethora of channels...

Φ	goūu	₿φād	ØΦVV	$g_{\Phi AZ}/g_{\Phi H^+W^-}$
h	$\cos \alpha / \sin \beta$	$-\sin lpha / \cos eta$	$\sin(\beta - \alpha)$	$\propto \cos(\beta - \alpha)$
Н	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\cos(\beta - \alpha)$	$\propto \sin(\beta - \alpha)$
Α	$\cot\beta$	aneta	0	$\propto 0/1$

The decoupling limit is controlled by $g_{HVV} = \cos(\beta - \alpha)$:

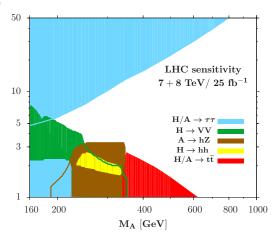

$$g_{HVV} \xrightarrow{M_A \gg M_Z} \chi \equiv \frac{1}{2} \frac{M_Z^2}{M_A^2} \sin 4\beta - \frac{1}{2} \frac{M_{22}^2}{M_A^2} \sin 2\beta \to 0$$

Tree-level part: doubly suppressed in both the tan $\beta \gg 1$ and tan $\beta \sim 1$ cases.

$$\sin 4\beta = \frac{4\tan\beta(1-\tan^2\beta)}{(1+\tan^2\beta)^2} \to \begin{cases} -4/\tan\beta & \text{for } \tan\beta \gg 1\\ 1-\tan^2\beta & \text{for } \tan\beta \sim 1 \end{cases} \to 0$$

The radiative part : behave as $-M_{22}^2/M_A^2 \times \cot \beta$, also vanishes at SHXX high tan β values \Rightarrow the decoupling $\liminf_{g_{HVV}} \phi$ is reached very quickly at high tan β , as soon as $M_A\gtrsim M_h^{\max}$. Instead, for tan $\beta\approx 1$, this radiatively generated component is maximal. Departure from the decoupling limit!

At low tan β : g_{HVV} is non-zero, g_{Htt} and g_{Att} are significant. $\Rightarrow H/A/H^{\pm}$ bosons can have sizable couplings to top quarks and massive gauge bosons if $\tan \beta \sim 3$.


A.Djouadi, J.Q., arXiv:1304.1787

The $H/A \to t \bar{t}$ channels

- It has not been considered in the case of the SM Higgs for 2 reasons :
 - For $M_{H_{SM}} \gtrsim 350$ GeV, $H_{SM} \rightarrow WW, ZZ$ dominate over the $H_{SM} \rightarrow t\bar{t}$.
 - The tt background was thought to be overwhelmingly large (it had to be evaluated in a large mass window because of the large \(\Gamma\),
- Situation different in the MSSM : \vec{fg} $\Gamma_{H/A} \lesssim 20$ GeV for tan $\beta \gtrsim 1$ and $M_{H,A} \lesssim 500$ GeV (and grow linearly with the Higgs masses beyond this value)

 \Rightarrow one can integrate the $t\bar{t}$ continuum background in a smaller invariant mass bin and enhance the S/B ratio.

• BR $(H/A \rightarrow t\bar{t}) \approx 100\%$ for tan $\beta \lesssim 3$ if kinematically open.

Search for $H/A \rightarrow t\bar{t}$ will be more favorable for the MSSM at low tan β than in the SM.

• Knowing $[\tan \beta, M_A]$ and fixing $M_h = 125$ GeV, the couplings of the Higgs bosons can be derived, including the generally dominant radiative corrections that enter in the MSSM Higgs masses :

$$c_V^0 = \sin(eta - lpha) \ , \ \ c_t^0 = rac{\coslpha}{\sineta} \ , \ \ c_b^0 = -rac{\sinlpha}{\coseta}$$

• However, there are also direct radiative corrections to the Higgs couplings not contained in the mass matrix. These can alter this simple picture!

• The $hb\bar{b}$ coupling : modified by additional one-loop vertex corrections, $c_b \approx c_b^0 \times [1 - \Delta_b/(1 + \Delta_b) \times (1 + \cot \alpha \cot \beta)]$

 Δ_b : SUSY-QCD corr. with sbottom-gluino loops

• The $ht\bar{t}$ coupling : derived indirectly from $\sigma(gg \to h)$ and $BR(h \to \gamma\gamma)$, $c_t \approx c_t^0 \times \left[1 + \frac{m_t^2}{4m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} (m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2 - (A_t - \mu \cot \alpha)(A_t + \mu \tan \alpha))\right]$

•
$$c_c = c_t^0$$
 and $c_\tau = c_b^0$.

- Invisible decays? (Djouadi,Falkowski,Mambrini,JQ, arXiv:1205.3169)
 - $\Rightarrow \text{ neutralinos are relatively light and couple significantly to } h \rightarrow \text{rather unlikely.}$