Vector Boson + Jets and Multiboson Results from ATLAS and CMS

Lindsey Gray

XLIXth Rencontres de Moriond, Electroweak Session

on behalf of the ATLAS and CMS Collaborations

• Triple and Quartic Anomalous Gauge Couplings

Standard Model Measurements at ATLAS

W/Z+jets and Multiboson Standard Model Production Cross Section Measurements

Status: March 2014

3

Standard Model Measurements at CMS

Feb 2014

CMS Preliminary

W+Jets Differential Cross Sections at the LHC CMS (5 fb⁻¹ : 7 TeV) Matlas (36 pb⁻¹ : 7 TeV)

• Compare with SHERPAI.4 (+ BlackHat), MadGraph5 (normalized to FEWZ)

5

 Comparison with SHERPAI.3 (+ BlackHat), ALPGEN

W+Jets Differential Cross Sections at the LHC

- CMS (5 fb⁻¹ : 7 TeV)
 - Compare with SHERPAI.4 (+ BlackHat), MadGraph5 (normalized to FEWZ)
 - CTI0 for SHERPA
- ATLAS (36 pb⁻¹ : 7 TeV)
 - Comparison with SHERPAI.3 (+ BlackHat), ALPGEN
 - CTEQ6.6M for SHERPA
- Many distributions described well with the exception of H_T distribution, Ist incl. jet bin
 - Opposite trends observed for CMS/ATLAS for SHERPA stand alone (see backup)
 - H_T sensitive to calculation order at high parton multiplicity

6

ATLAS :W+D/D*/Charm-jet Production

CMS : W+D/D*/Charm-jet Production

- Exclusive decay search
 - Exploit secondary vertex finding to suppress non-HF background
 - Search additionally for nonresonant c-decays by relaxing secondary vertex mass requirements
 - Search for 2/3 pronged vertices to tag D^{0/+-}
- Semi-leptonic decays tagged using soft muons in jets
- Extracted differential cross section ratios well predicted by simulation

• ATLAS

- Use W+c, $W^{+/-}$ asymmetry, Z rapidity
- Use HERA DIS (v1.5) as baseline
 - Strange PDF parameterized by one variable

Ratio

1.4 1.2

0.6

0.1

0.2

- Use W+c & 5fb⁻¹ W^{+/-} asymmetry
- Use HERA DIS (vI.0) as baseline
 - Allow strange PDF shape and normalization to vary independently
- Similar CMS and ATLAS measurements using different methodologies!
 - Small tension over strange-suppression between ATLAS & CMS results

Z+Jets Differential Cross Sections at the LHC

- ATLAS (5 fb⁻¹ : 7 TeV)
- CMS (5 fb⁻¹ : 7 TeV)
- Study same variables as in W+Jets cross sections
- CMS result compares to:
 - SHERPA2 + 0,1 jets matched @NLO
 - Up to 4 jets in matrix element @LO
 - First time SHERPA2 is compared to V+Jets sector!
 - POWHEG + 0,1 jets matched @NLO
 - MadGraph5, normalized to FEWZ

Lindsey Gray, FNAL

Z+b(b) Production at CMS

Measure Z+b(b) production exploiting secondary vertex ID

- Employ discriminant using secondary vertex decay length
 - Residual lighter flavor contribution determined using template fit
- 2 b-jet final state recently added
 - Good agreement seen with MC prediction
- Significant improvement of agreement with MC in the 5 active flavor scenario

Cross section	Measured	MadGraph	aMC@NLO	MCFM	MadGraph	aMC@NLO
		(5F)	(5F)	(parton level)	(4F)	(4F)
$\sigma_{\rm Z+1b}$ (pb)	$3.52 \pm 0.02 \pm 0.20$	3.66 ± 0.22	$3.70^{+0.23}_{-0.26}$	$3.03\substack{+0.30\\-0.36}$	$3.11\substack{+0.47\\-0.81}$	$2.36\substack{+0.47 \\ -0.37}$
$\sigma_{\rm Z+2b}$ (pb)	$0.36 \pm 0.01 \pm 0.07$	0.37 ± 0.07	$0.29\substack{+0.04 \\ -0.04}$	$0.29\substack{+0.04\\-0.04}$	$0.38\substack{+0.06\\-0.10}$	$0.35\substack{+0.08 \\ -0.06}$
$\sigma_{\mathrm{Z+b}}$ (pb)	$3.88 \pm 0.02 \pm 0.22$	4.03 ± 0.24	$3.99^{+0.25}_{-0.29}$	$3.23\substack{+0.34\\-0.40}$	$3.49\substack{+0.52\\-0.91}$	$2.71\substack{+0.52 \\ -0.41}$
$\sigma_{Z+b/Z+j}$ (%)	$5.15 \pm 0.03 \pm 0.25$	5.35 ± 0.11	$5.38^{+0.34}_{-0.39}$	$4.75_{-0.27}^{+0.24}$	$4.63\substack{+0.69 \\ -1.21}$	$3.65\substack{+0.70 \\ -0.55}$

ATLAS : Electroweak Zjj Production

N_{obs} / 250 GeV

10

10

102

10

0.5

Data (2012)

Background

Background + EW Z

• > 5 σ observation based on 8 TeV data

- Also limits on anomalous gauge couplings
- Use SHERPA used to create signal and background templates
 - Bkg. template shape scaled and constrained using central-jet control Data 1.5 region
 - Measurement performed in 4 fiducial regions
 - Leading systematics from jet energy scale, control region statistics, lepton corrections to particle level
- Good agreement with SM

500 1000 1500 2000 2500 3000 3500 m_{ii} [GeV] Fiducial Cross Section:

 $\sigma_{\rm EW} = 54.7 \pm 4.6 \,(\text{stat}) \,^{+9.8}_{-10.4} \,(\text{syst}) \,\pm 1.5 \,(\text{lumi}) \,\text{fb.}$

unconstrained

1000

1500

2000

2500

3000

m. [GeV]

3500

W

N_{obs} / 250 GeV

ATLAS

√s = 8 TeV

∫ L dt = 20.3 fb⁻

control region

arXiv:1401.7610

Cross Section Prediction (POWHEG): $46.1 \pm 0.2 \,(\text{stat}) \,{}^{+0.3}_{-0.2} \,(\text{scale}) \pm 0.8 \,(\text{PDF}) \pm 0.5 \,(\text{model}) \,\text{fb}$ Further discussion in Andy Pilkington's Lindsey Gray, FNAL talk, later this session!

CMS : Electroweak Zjj Production

- Employ two methods and combine results to measure cross section
 - BDT analysis, µ channel only

 σ (EWK $\ell \ell j j$) = 226 \pm 26_{stat} \pm 35_{syst} fb.

NLO Prediction: 239 fb

WZ and ZZ using $Z \rightarrow bb$ Decays

• Spin-off of CMS H>bb analysis

- Scalar boson considered as background
- BDT analysis based on classification in V pT, events sorted by expected S/B

See Caterina Vernieri's talk in YSF4 for further details!

- Corresponding category based analysis using similar event selection
 - 4.3 σ observation

Lindsey Gray, FNAL

Anomalous Gauge Coupling Searches

- Search for effects of higher order operators involving SM fields
 - Dimension 6
 - Effects of new particles in loops
 - Dimension 8

Anomalous Triple Gauge Coupling Searches

- Neutral anomalous triple gauge coupling limits updated
 - CMS 2I2v data
 - Improvement in limits due to higher branching fraction
- Further exploitation of data can be achieved through combination of channels
 - Already done in Zγ channels for ννγ + Ilγ

Feb 2013			
			ATLAS Limits
h ^γ		Ζγ	-0.015 - 0.016 4.6 fb ⁻¹
¹¹ 3	н	Ζγ	-0.003 - 0.003 5.0 fb ⁻¹
	⊢−−−− −	Ζγ	-0.022 - 0.020 5.1 fb ⁻¹
ьZ	⊢−−−−	Ζγ	-0.013 - 0.014 4.6 fb ⁻¹
П ₃	н	Ζγ	-0.003 - 0.003 5.0 fb ⁻¹
	⊢−−−−−	Ζγ	-0.020 - 0.021 5.1 fb ⁻¹
h^{γ} v 100	⊢ −−−1	Ζγ	-0.009 - 0.009 4.6 fb ⁻¹
n ₄ x 100	Н	Ζγ	-0.001 - 0.001 5.0 fb ⁻¹
hZv100	⊢ −−−1	Ζγ	-0.009 - 0.009 4.6 fb ⁻¹
n ₄ x100	Н	Ζγ	-0.001 - 0.001 5.0 fb ⁻¹
-0.5	0	05	1 15 X10
	Ū	0.0 Ta	
	Ū	aTC	GC Limits @95% C.L
Nov 2013	0	aTC	GC Limits @95% C.L
Nov 2013		aTC	GC Limits @95% C.L
Nov 2013		aTC	GC Limits @95% C.L
Nov 2013		aTC	GC Limits @95% C.L
Nov 2013 f ^γ ₄		ZZ ZZ (2l2v)	GC Limits @95% C.L ATLAS Limits CMS Prel. Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹
Nov 2013 f ^γ ₄ f ^Z		ZZ ZZ ZZ (2l2v) ZZ	GC Limits @95% C.L -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹
$\frac{1}{f_4^{\gamma}}$		ZZ ZZ ZZ (2l2v) ZZ ZZ	GC Limits @95% C.L -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹
Nov 2013 f_4^{γ} f_4^{Z}		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v)	GC Limits @95% C.L -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹
Nov 2013 f_4^{γ} f_4^{Z} f_4^{γ}		aTC ZZ ZZ ZZ (2l2ν) ZZ ZZ (2l2ν) ZZ ZZ (2l2ν) ZZ	GC Limits @95% C.L -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.004 - 0.003 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.016 - 0.015 4.6 fb ⁻¹
f_{4}^{γ} f_{5}^{γ}		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v)	GC Limits @95% C.L -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.016 - 0.015 4.6 fb ⁻¹ -0.005 - 0.005 19.6 fb ⁻¹
Nov 2013 f_4^{γ} f_4^{Z} f_5^{γ}		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v)	GC Limits @95% C.L ATLAS Limits CMS Prel. Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.016 - 0.015 4.6 fb ⁻¹ -0.005 - 0.005 19.6 fb ⁻¹ -0.004 - 0.004 5.1, 19.6 fb ⁻¹
Nov 2013 f_4^{γ} f_5^{γ} f_5^{Z}		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ	GC Limits @95% C.L -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.016 - 0.015 4.6 fb ⁻¹ -0.005 - 0.005 19.6 fb ⁻¹ -0.004 - 0.004 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹
f_{4}^{γ} f_{5}^{γ} f_{5}^{γ}		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ(2l2v) ZZ ZZ(2l2v) ZZ ZZ(2l2v) ZZ	$\begin{array}{c} \text{ATLAS Limits} @ 95\% \text{ C.L} \\ \hline \text{ATLAS Limits} \\ \text{CMS Prel. Limits} \\ \hline \text{CMS Prel. Limits}$
f_{4}^{γ} f_{5}^{γ} f_{5}^{Z}		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ(2l2v) ZZ ZZ(2l2v) ZZ ZZ (2l2v)	GC Limits @95% C.L ATLAS Limits CMS Prel. Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.005 - 0.005 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹
f_4^{γ} f_4^{γ} f_5^{γ} f_5^{γ} f_5^{Z} f_5^{Z}		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ(2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v)	$\begin{array}{c c} \text{ATLAS Limits} @ 95\% \text{ C.L} \\ \hline \text{ATLAS Limits} \\ \text{CMS Prel. Limits} \\ \hline CMS Prel. Limit$

Anomalous Triple Gauge Coupling Searches

- Charged anomalous triple gauge coupling limits
 - LHC uniformly approaching LEP sensitivity
 - Surpassing LEP in some cases!
- Advances made exploiting new final states
 - Merged-jet topologies in WV, V→dijet
- Many 8 TeV analyses still to come
 - Significant improvements in sensitivity per channel expected

eb 2013			
			ATLAS Limits
		.) / /	
$\Delta \kappa_{\gamma}$		— VVγ	-0.410 - 0.460 4.6 fb
r 🛏		Wγ	-0.380 - 0.290 5.0 fb ⁻
		WW	-0.210 - 0.220 4.9 fb ⁻¹
	⊢−−−−−	WV	-0.110 - 0.140 5.0 fb ⁻¹
	⊢oI	D0 Combinatio	on -0.158 - 0.255 8.6 fb ⁻¹
	⊢ ●	LEP Combinat	ion -0.099 - 0.066 0.7 fb ⁻¹
2	⊢ −−1	Wγ	-0.065 - 0.061 4.6 fb ⁻¹
λ_{γ}	⊢I	Wγ	-0.050 - 0.037 5.0 fb ⁻¹
	⊢	ww	-0.048 - 0.048 4 9 fb ⁻¹
	· ·	W07	$-0.038 - 0.030 - 5.0 \text{ fb}^{-1}$
		DO Combinatio	$0.036 0.044 8.6 \text{ fb}^{-1}$
	H•H	LEP Combinat	ION -0.059 - 0.017 0.7 fb
-0.5	0	0.5	1 1.5
-0.5	0	0.5 aTGC	1 1.5 C Limits @95% C.I
-0.5	0	0.5 aTGC	1 1.5 C Limits @95% C.I
-0.5	0	0.5 aTGC	1 1.5 C Limits @95% C.I
-0.5	0	0.5 aTGC	1 1.5 C Limits @95% C.I
-0.5	0	0.5 aTGC	1 1.5 C Limits @95% C.I
-0.5	0	0.5 aTGC	1 1.5 C Limits @95% C.1 ATLAS Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹
-0.5 Feb 2013		0.5 aTGC	1 1.5 C Limits @95% C.1 ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ ion -0.074 - 0.051 0.7 fb ⁻¹
-0.5		0.5 aTGC	1 1.5 C Limits @95% C.1 ATLAS Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ ion -0.074 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹
$\Delta \kappa_z$		0.5 aTGC	1 1.5 2 Limits @95% C.1 ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹
-0.5		0.5 aTGC WW WV LEP Combinat WW WV	1 1.5 C Limits @95% C.1 ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4 6 fb ⁻¹
$\Delta \kappa_z$		0.5 aTGC WW WV LEP Combinat WW WV WV UV UV WV	1 1.5 2 Limits @95% C.1 ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹
-0.5		0.5 aTGC WW WV LEP Combinat WW WZ WV D0 Combinatio	1 1.5 2 Limits @95% C.I ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.036 - 0.044 8.6 fb ⁻¹
$\Delta \kappa_z$		0.5 aTGC WW WV LEP Combinat WW WZ WV D0 Combinatio LEP Combinatio	1 1.5 2 Limits @95% C.I ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.036 - 0.044 8.6 fb ⁻¹
$\Delta \kappa_z$		0.5 aTGC WW WV UEP Combinat WW WV WZ WV D0 Combinatio LEP Combinatio UEP Combinatio	1 1.5 C Limits @95% C.1 ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ on -0.036 - 0.044 8.6 fb ⁻¹ ion -0.059 - 0.017 0.7 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹
Δg_1^{z}		0.5 aTGC WW WV LEP Combinat WW WZ WV D0 Combinatio LEP Combinat WW WW	1 1.5 2 Limits @95% C.1 ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ on -0.036 - 0.044 8.6 fb ⁻¹ ion -0.059 - 0.017 0.7 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.095 - 0.095 4.9 fb ⁻¹
$\Delta \kappa_{z}$		0.5 aTGC WW WV UEP Combinat WW WV WZ WV D0 Combinatio LEP Combinat WW WV WZ	1 1.5 C Limits @95% C.1 ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.095 - 0.095 4.9 fb ⁻¹ -0.057 - 0.093 4.6 fb ⁻¹
$\Delta \kappa_{z}$		0.5 aTGC WW WV LEP Combinat WW WZ WV D0 Combinatio LEP Combinat WW WW WZ D0 Combinatio	1 1.5 2 Limits @95% C.1 ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.095 - 0.095 4.9 fb ⁻¹ -0.057 - 0.093 4.6 fb ⁻¹ -0.034 - 0.084 8.6 fb ⁻¹
$\Delta \kappa_{z}$		0.5 aTGC WW WV UEP Combinat WW WV WV WV WV WV D0 Combinatio LEP Combinat WW WV WV	1 1.5 C Limits @95% C.1 ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.095 - 0.095 4.9 fb ⁻¹ -0.057 - 0.093 4.6 fb ⁻¹ -0.034 - 0.084 8.6 fb ⁻¹ ion -0.054 - 0.021 0.7 fb ⁻¹
$\Delta \kappa_{z}$		0.5 aTGC WW WV UV LEP Combination WW WV WZ WV D0 Combination LEP Combination LEP Combination LEP Combination LEP Combination U D0 Combination U D0 Combination U D0 Combination	1 1.5 C Limits @95% C.1 ATLAS Limits CMS Limits DO Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.095 - 0.095 4.9 fb ⁻¹ -0.057 - 0.093 4.6 fb ⁻¹ -0.057 - 0.093 4.6 fb ⁻¹ -0.054 - 0.021 0.7 fb ⁻¹ -0.054 - 0.054 - 0.021 0.7 fb ⁻¹ -0.054 - 0

Anomalous Quartic Gauge Coupling Searches

- Exploit unique final states to access pure quartic contributions
 - Exclusive WW production
 - WWγ and WZγ, with one massive boson decay into jets
- New measurements in last year
 - Probing charged quartic gauge couplings
 - WWYY,WWZY

Significant improvement over D0 and LEP

Lindsey Gray, FNAL

Conclusions

- Standard Model V+Jets measurements from the first LHC run are improving and testing the limits of our predictive capabilities
 - Matching at NLO and high parton multiplicity generators being put to the test by both ATLAS and CMS
 - New PDF constraints improve predictions and help better prepare us for the I3 TeV run
 - Electroweak production of jets now well measured and confirmed by both collaborations
- Multiboson measurements and limits rapidly improving in accuracy as 8 TeV data are analyzed
 - New diboson channels available
 - Statistical power of LHC data now rivals precision of LEP

BACKUP

Lindsey Gray, FNAL

3.8 T Solenoid

Track p_T resolution ~ 1%

Fully Silicon Tracker

Lead Tungstate ECAL

Brass Sampling HCAL

Lindsey Gray, FNAL

2 T Solenoid Track p_T resolution ~ 2.5% Silicon Tracker ID + TRT Liquid Argon ECAL Steel HCAL with Scintillating Tiles Extensive Muon System in Toroidal Field

Further W+Jets Plots

Further Z+Jets Plots

Comparison across PDFs

Further Z+Jets Plots

Lindsey Gray, FNAL