Tevatron heavy flavor results on B lifetimes and decays and D asymmetries Rencontres de Moriond EW 2014 March 15 - March 22, 2014 Simone Donati, for the CDF and DO Collaborations University and INFN Pisa #### Introduction - Heavy flavor production and Triggers at the Tevatron - CDF and DO detectors - Overview of most recent CDF and DO results related to B lifetimes, decays and D asymmetries #### See also Bruce Hoeneisen: "Anomalous DiMuon charge asymmetry" Julie Hogan "Forward-backward Asymmetry of b quarks in B+ \to J/ ψ K+ decays at the D0 Experiment" #### CDF results: http://www-cdf.fnal.gov/physics/new/bottom/bottom.html DO results: www-d0.fnal.gov/d0_publications/d0_pubs_list_runII_bytopic_byyear.html #### Heavy Flavor Production at Tevatron For the last 20 years Tevatron has enjoyed a very rich heavy flavor Physics program with more than 150 published papers #### Pros - Large b production cross section - All B species produced B_d , B_u , B_s , Λ_b , Ξ_b , Σ_b , Ω_b with production fractions $fd: fu: fs: f\Lambda \sim 4: 4: 1: 1$ #### Cons - $-\sigma(p\bar{p}) \sim 100 \text{ mb} = \sim 10^3 10^4 \times \sigma(b\bar{b})$ - Large backgrounds suppressed by triggers targeting specific decays The CDF Secondary Vertex Trigger (>10 years of work) granted access to the hadronic modes Vertex BDecay Length B Lxy $P_T(B) \ge 5 \text{ GeV}$ Primary $L_{xy} \ge 450 \mu \text{m}$ d = impact parameter ### CDF B Triggers Di-Muon (J/ψ) $Pt(\mu) > 1.5 GeV$ J/ψ modes down to low Pt(J/ψ) (~ 0 GeV) Displaced trk lepton (e, μ) $IP(trk) > 120\mu m$ Pt(lepton) > 4 GeV 2-Track Trig. Pt(trk) > 2 GeV $IP(trk) > 100 \mu m$ Fully hadronic modes #### CDF and DO Detectors Drift Chamber/Silicon detector (R~1.4 m, 1.4 T B Field) Excellent vertex/mass resolution Tracker/Muon acceptance: $|\eta|<1$ Asymmetric design in tilted cells Displaced vertex Trigger Fiber Tracker/Silicon detector (R~0.5 m, 2.0 T B Field) Reduced mass resolution Tracker/Muon acceptance: $|\eta|<2$ Regular reversal of magnetic field cancels detector asymmetries #### In this Talk - B baryons properties (CDF) - Ξ_b and Ω_b mass and lifetime in J/ψ X modes - Ξ_b^- , Ξ_b^0 and Ω_b^- mass in fully hadronic modes - $B_c^+ \rightarrow J/\psi \mu^+ \nu$ relative cross section (CDF) - Search for X(4140) (D0) - Charm Mixing (CDF) - Search for CP violation in b and c decays (DO) - direct CPV in B+ \rightarrow J/ ψ K+ and B+ \rightarrow J/ $\psi\pi$ + - direct CPV in $D_s^+ \rightarrow \phi \pi^+$ ### B Baryons For a long time totally a Tevatron field, now a rich legacy to LHC - $\Sigma_{\rm b}^{(\star)+}$ and $\Sigma_{\rm b}^{(\star)-}$ observed in 2006 - Ξ_b^- observed in 2007 - $\Omega_{\rm b}^{-}$ observed in 2008 - Ξ_b^0 observed in 2011 $$J = 3/2$$ b Baryons $$J = 1/2$$ b Baryons #### $\Xi_{\rm b}^{-}/\Omega_{\rm b}^{-}$ Reconstruction Reconstruct Ξ_{b}^{-} and Ω_{b}^{-} in the decays $$\Xi_{b}^{-} \rightarrow J/\psi \Xi^{-}, J/\psi \rightarrow \mu^{+}\mu^{-}, \Xi^{-} \rightarrow \Lambda\pi^{-}$$ $$\Omega_b^- \to J/\psi \ \Omega^-, \ J/\psi \to \mu^+\mu^-, \ \Omega^- \to \Lambda K^-$$ 5-track, 3-vertex kinematic fit $\mu^+\mu^-$ constrained to J/ψ mass Trajectories constrained to appropriate topologies Reconstructed Ξ^{-}/Ω^{-} constrained to $\mu^{+}\mu^{-}$ vertex Long life of the Ξ^- and Ω^- leaves hits in the silicon detector (unique to baryons) #### Check procedure: Λ_b mass/lifetime #### Binned lifetime fit distributions - Each bin comes from an independent fit to the mass distribution - Dashed lines are fit projections Mass (Λ_b): 5620.14 ± 0.31(stat) ± 0.40(syst) MeV/c2 Lifetime (Λ_b): 1.565 ± 0.035(stat) ± 0.020(syst) ps #### Ξ_b mass and lifetime Mass (Ξ_b) : 5791.6 ± 2.0(stat) ± 0.40(syst) MeV/ c^2 Lifetime (Ξ_b) : 1.36 ± 0.15(stat) ± 0.02(syst) ps LHCb: 5795.8 ± 0.9(stat) ± 0.40(syst) MeV/ c^2 Observation #### Ω_b mass and lifetime PRD 80, 072003 (2009) Mass (Ω_h) : 6051.4 ± 4.2(stat) ± 0.5(syst) MeV/c² Lifetime (Ω_b^-): 1.77 +0.55 -0.41(stat) ± 0.02(syst) ps LHCb: $6046.0 \pm 2.2(stat) \pm 0.5(syst)$ MeV/c² 6.0 M(Ω_c⁰ π⁻) 6.2 GeV/c² 5.9 5.8 #### $B_c^+ \rightarrow J/\psi \mu^+ \nu$ relative cross section $$\frac{\sigma(B^{+}_{c}) \times BR(B^{+}_{c} \to J/\psi \mu^{+} \nu)}{\sigma(B^{+}) \times BR(B^{+} \to J/\psi K^{+})} = \frac{N(B^{+}_{c}) \times \epsilon_{re}}{N(B^{+})}$$ | | | | | _ | |---------------------------|--------------------|--------------------------|-------------------------|---| | | $3-4~{ m GeV/c}^2$ | $ extstyle{4-6 GeV/c}^2$ | 6-10 GeV/c ² | CDF Run II Preliminary: 8. | | B_c^+ candidates | 132±11.5 | 1370±37.0 | 208±14.4 | | | | 11.5±2.4 | 96.5±6.9 | 25.0±3.5 | Misid. Muo
Misid. J/ψ | | Misidentified Muon | 86.7 | 344.4 | 32.1 | bb Backg. | | Double Fake | -5.1 | -19.0 | -5.2 | B ⁺ Monte O | | $bar{b}$ Background | 12.4±2.4 | 178.6±12.4 | 110.4±10.7 | <u>a</u> 150 | | Other decay modes | 2.6±0.1 | 30.0±0.2 | 0 | <u>8</u> 100 - 10 | | Total background | 108.1 ± 3.4 | 630.5 ± 14.2 | 162.3 ± 11.3 | Candidates 50 50 50 50 50 50 50 50 50 50 50 50 50 | | B_c^+ Excess | 23.9±12.0 | 739.5±39.6 | 45.7±18.3 | S Latetan | | B_c^+ Monte Carlo, | 22.6±0.6 | 739.5±3.7 | 27.6±0.6 | 3 4 5 6 7 8 Mass(J/ψμ+) (GeV/c²) | | (scaled to signal region) | | | | ινιασσίον φμ γ (ασ ννο) | fb⁻¹ #### $B_c^+ \rightarrow J/\psi \mu^+ \nu$ relative cross section #### Systematic errors due to - B⁺_c background estimate - Relative efficiency estimate | | $\Delta\epsilon_{rel}$ | |-------------------|------------------------| | B_c^+ lifetime | $+0.134 \\ -0.147$ | | B_c^+ spectrum | $^{+0.356}_{-0.303}$ | | B^{+} spectrum | ± 0.055 | | XFT | ± 0.070 | | CMUP efficiency | $^{+0.092}_{-0.087}$ | | Total systematics | $+0.401 \\ -0.359$ | | B_c^+ background | Systematic uncertainty | | |------------------------|------------------------|--| | Misidentified J/ψ | not used | | | Misidentified Muon | $+9.6 \\ -16.5$ | | | Double fake | $+0.5 \\ -0.9$ | | | $bar{b}$ background | ± 5.8 | | | Other decay modes | ± 16.3 | | | Total | $^{+19.8}_{-23.9}$ | | | Quantity | Value | |---|---| | $N(B_c^+ \to J/\psi \mu^+ \nu)$ | 739.5 ± 39.6 (stat) $^{+19.8}_{-23.9}$ (sys) | | $N(B^+ \to J/\psi K^+)$ | 14338 ± 125 (stat) | | ϵ_{rel} | 4.093 ± 0.038 (stat) $^{+0.401}_{-0.359}$ (sys) | | $\frac{\sigma(B_c^+)BR(B_c^+{\to}J/\psi\mu^+\nu)}{\sigma(B^+)BR(B^+{\to}J/\psi K^+)}$ | 0.211 \pm 0.012 (stat) $^{+0.021}_{-0.020}$ (sys) | #### Search for X(4140) Question of existence of the narrow X(4140) resonance in the $J/\psi\phi$ spectrum of the $B^+\to J/\psi\phi K^+$ decay is still open. Require Lxy(B+) >250 μ m pT(B+) >7 GeV/c d(J/ $\psi\phi$) <50 μ m 1.005 < m(ϕ) < 1.035 GeV/c2 Estimate 215 ±37 B⁺ events #### Search for X(4140) - CDF: 3.80 evidence - Belle: No evidence - LHCb: No evidence - CMS: $>5\sigma$ observation 3.1σ evidence for the X(4140) Mass $4159 \pm 4.3(stat) \pm 6.6(syst) MeV/c^2$ Width $19.9 \pm 12.6(stat) \pm 8(syst) MeV/c^2$ PRD89, 012004 (2014) $$\frac{BR(B^{+} \to X(4140)K^{+})}{BR(B^{+} \to J/\psi \varphi K^{+})} = [19 \pm 7(stat) \pm 4(syst)] \%$$ ### Charm Mixing - Compare rate of wrong-sign $D^0\!\!\to K^+\pi^-$ decays to right-sign $D^0\!\!\to K^-\pi^+$ decays - Tag flavor at production with $D^{*+} \rightarrow D^0\pi^+$ decays - Wrong sign events can come from mixing or double Cabibbo suppressed (DCS) decays - DCS decays are time independent • If no CP violation and small mixing $(x,y \ll 1)$: $$R(t/\tau) = R_D + \sqrt{R_D} y' \times (t/\tau) + 1/4 \times (x'^2 + y'^2) \times (t/\tau)^2$$ ### Extracting clean WS signal - WS signal contaminated by large background due to wrong charge assignment in RS decays - Remove WS candidates consistent with RS hypothesis and vice versa - 96 % of background removed - 78 % efficient on signal #### D*+ reconstruction - The D⁰ yields are determined in 20 bins of decay time, and 60 bins of Δm = $m(K\pi\pi_{tag})$ $m(K\pi)$ $m(\pi)$, for RS and WS - Correction needed for B decay component, which generates a larger apparent lifetime - Use D⁰ impact parameter # EDE No-mixing 58.75/19 ## D^o Mixing measurement D^0 mixing is observed at 6.1σ , mixing parameters are compatible with other experiments PRL 111, 231802 (2013) 4.30 ± 0.06 R_B #### Direct CPV in $B^+ \rightarrow J/\psi K^+$, $B^+ \rightarrow J/\psi \pi^+$ No effect expected in b \rightarrow scc (J/ ψ K), possible in b \rightarrow dcc (J/ ψ π) $$A(J/\psi X) = A(J/\psi X)_{RAW} + A(X)$$ $$Correction in rec. asym.$$ $$between \ X^+ \ and \ X^-$$ $$Raw \ asym. \ between$$ $$rec. \ B^+ \ and \ B^-$$ - Regular reversal of magnetic field minimizes $A(\pi)$ - A(K) measured in $K^{*0} \rightarrow K^{+}\pi^{-}$ Event selection chosen to minimize statistical uncertainty on $A(J/\psi K)_{RAW}$ ### Direct CPV in B+ \rightarrow J/ ψ K+, B+ \rightarrow J/ ψ π + | Type of uncertainty | $A^{J/\psi K}$ (%) | $A^{J/\psi\pi}$ (%) | |--------------------------------|--------------------|---------------------| | Statistical | 0.36 | 4.4 | | Mass range | 0.022 | 0.55 | | Fit function | 0.011 | 0.69 | | $\Delta A_{\mathrm{tracking}}$ | 0.05 | 0.05 | | ΔA_K | 0.043 | n/a | | Total systematic uncertainty | 0.07 | 0.9 | | Total uncertainty | 0.37 | 4.5 | $A(J/\psi K)$ = [0.59 ±0.36(stat) ±0.07(syst)] % with a 1 % correction due to K^+/K^- asymmetry $$A(J/\psi\pi) = [-4.2 \pm 4.4(stat) \pm 0.9(syst)] \%$$ ### Direct CPV in $D^+_s \rightarrow \varphi \pi^+$ SM predicts non-existent CPV in this decay mode $$A(\phi \pi^+) = A(\phi \pi^+)_{RAW} - A_{DET} - A_{PHYS}$$ RAW asym. from a simultaneous fit of sum/diff distributions A_{DFT} = -0.08% from data, A_{PHYS} = 0.02% from MC World's best A_{CP} = [-0.38 ±0.26(stat) ±0.08(syst)] % arXiv:1312.0741 accepted by PRL #### Conclusions - CDF and DO have been first class players in the field of heavy flavor physics for 20 years, with >150 papers - Our results have been complementary and competitive with B-Factories in term of precision - After showing that precision Heavy Flavor Physics is possible at hadron colliders, we are now leaving a rich legacy to LHC and future B-Factories - But, still more to come with full Tevatron statistics