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Introduction Leptogenesis Dark Matter Summary

How many new particles do we need after the Higgs?
The Standard Model and General Relativity together explain
almost all phenomena in nature, but. . .

@ gravity is not quantized

@ a handful of observations remain unexplained

@ neutrino oscillations
@ baryon asymmetry of the universe
@ dark matter

@ accelerated expansion of the universe (now and then)
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Introduction Leptogenesis Dark Matter Summary

How many new particles do we need after the Higgs?
The Standard Model and General Relativity together explain
almost all phenomena in nature, but. . .

@ gravity is not quantized

@ a handful of observations remain unexplained

@ neutrino oscillations

@ baryon asymmetry of the universe

@ dark matter

@ accelerated expansion of the universe (now and then)

@ In addition there are esthetic issues (tuning/hierarchy, strong
CP...) and some inconclusive observations (g — 2, Neg,. . .).
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Leptogenesis Dark Matter Summary
Neutrino minimal Standard Model (vMSM)

. - ~ - 1 -
L= ‘CSM + IﬂRaVR — LLFVR(D — ljRFTLCDJr — E(VCRMMVR —+ ﬂRM,:rAVg)

@ Majorana masses My, introduce new mass scale(s)

@ six (Majorana) mass eigenstates

@ three light "active neutrinos" v ~ U, (1. + 0vR);
@ three heavy "sterile neutrinos" or "heavy neutral leptons”
N, ~ g + HT I/E
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L= ‘CSM + IﬂRaVR — LLFVR(D — ljRFTLCDJr — E(VCRMMVR —+ ﬂRM,:rAVg)

@ Majorana masses My, introduce new mass scale(s)

@ six (Majorana) mass eigenstates
@ three light "active neutrinos" v ~ U, (1. + 0vR);
@ three heavy "sterile neutrinos" or "heavy neutral leptons”
N, ~ g + HT I/E
@ mass of N; is in the keV range

@ decaying DM candidate
@ predicted properties match "observed" 3.5keV signal!

@ masses of N 3 in the GeV range

@ generate neutrino masses via seesaw
@ do baryogenesis via leptogenesis in the early universe

Asaka/Shaposhnikov 2005
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Introduction Dark Matter Summary
Leptogenesis

@ fermion number violation

@ sphalerons violate B, but conserve B — L at T > 140 GeV
@ Yukawa couplings F violate individual lepton flavour numbers
@ in addition My, violates total lepton number
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@ fermion number violation
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@ in addition My, violates total lepton number

@ C and CP violation

@ weak interaction violates P
@ additional complex phases in F violate CP
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Introduction
Leptogenesis

@ fermion number violation

Dark Matter Summary

@ sphalerons violate B, but conserve B — L at T > 140 GeV
@ Yukawa couplings F violate individual lepton flavour numbers
@ in addition My, violates total lepton number

@ C and CP violation
@ weak interaction violates P

@ additional complex phases in F violate CP

@ nonequilibrium

@ N, production
@ N, freezeout
@ N, decay
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Introduction Dark Matter Summary
Leptogenesis during N, production

@ CP-violating oscillations amongst N, generate L, during their
thermal production

@ sphalerons convert part of them into B
Akhmedov/Rubakov/Smirnov 1998, Asaka/Shaposhnikov 2006

@ With two RH neutrinos this requires a mass degeneracy ~ 103
Canetti/MaD/Frossard/Shaposhnikov 1208.4607

@ With three RH neutrinos no such degeneracy is needed!

MaD/Garbrecht 1206.5537
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Introduction Dark Matter Summary
Minimal scenario: Two RH neutrinos
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Canetti/MaD/Frossard/Shaposhnikov 1208.4607
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Introduction Dark Matter Summary
Probing the origin of matter in the laboratory
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baryogenesis works without degeneracy
lab searches SNOOPY 1310.1762 LHCb, BELLE, SNOOPY,...

Smirnov/Kersten, Atre/Han/Pascoli/Zhang, Canetti/MaD/Shaposhnikoy, . . .
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Introduction Leptogenesis
If RH neutrinos are DM, then there are three basic questions
@ They are decaying DM. Where is the decay line?

@ How were they produced?
@ Are they consistent with structure formation?

Summary
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Introduction Leptogenesis Summary
If RH neutrinos are DM, then there are three basic questions

@ They are decaying DM. Where is the decay line?

@ main channelis N — 3y - unobservable!
@ radiative decay N — 1y

@ Has the X-ray line been found? 1402.2301,1402-4119
@ How were they produced?

@ Are they consistent with structure formation?

@ DM is absolutely essential to form structures in the universe
@ DMis“cold” , i.e. (k) < M at freezeout

11/13



RH neutrino Dark Matter - observations
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Boyarsky/Ruchayskiy/lakubovskyi/Franse 1402.4119,
Canetti/MaD/Frossard/Shaposhnikov 1208.4607
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How many new particles do we need after the Higgs?

Three.
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Introduction Leptogenesis Dark Matter
How many new partlcles do we need after the Higgs?

Three.

Frustea fit per plura
quod potest fieri per pauciora.

[It is futile to do with more things
that which can be done with fewer]

William of Ockham, Summa Totius Logicae
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Introduction Leptogenesis Dark Matter
Dark Matter Production
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Introduction Leptogenesis Dark Matter

Structure Formation
@ free streaming of DM erases small scale structures
= DM s “cold” , i.e. (k) < M at freezeout
@ for thermal spectrum this implies: DM particle is heavy
@ but for non-thermal spectrum predictions are complicated. ..
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Introduction Leptogenesis Dark Matter

Quasar absorption lines (Ly a-forest) map structure in the universe

___ Emission lines from the Quasar
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This is compared to structure formation simulations
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Introduction Leptogenesis Dark Matter
Structure formation with CWDM

@ CDM works very well on large scales
@ WDM seems to work better on small scales (subhalos)
@ few simulations exist for non-thermal spectra / CWDM

@ the initial spectra were calculated under very simplifying
assumptions about the chemical potentials
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