

Latest results of OPERA

C. Jollet - IPHC Strasbourg On behalf of the OPERA collaboration

17th March 2014 - Rencontres de Moriond

OPERA experiment

- Goal: first direct observation of v_{τ} appearance from v_{μ} oscillation at atmospheric scale by τ detection (production threshold: 3.5 GeV).
- Full coverage of the parameter space ($\Delta m_{23}^2 \approx 2.4 \times 10^{-3} \text{ eV}^2$ and $\sin^2 2\theta_{23} \approx 1.0$) indicated by SuperK,T2K and MINOS.
- Long Baseline (730 km) experiment in the CNGS (CERN Neutrino To Gran Sasso) v_{μ} beam.

 Located in the LNGS which is under 1400 m rock overburden.

Conventional high energy beam optimized for v_{τ} CC interactions observation.

<e<sub>vµ ></e<sub>	I7 GeV	
$(v_e + \overline{v}_e)/v_\mu$	0.87%	
$\overline{ u}_{\mu}/ u_{\mu}$	2.1%	
v_{τ} prompt	negligible	

Low v_e contamination which allows to put also constraints on $v_{\mu} \rightarrow v_e$ oscillation.

Detection principle

- The detection of the τ lepton requires an identification of the decay "kink".
- The detector must fulfill the following requests:
 - I. Large mass due to small CC cross section (lead target).
 - 2. Micrometric resolution to observe the kink (photographic emulsions).
 - 3. Locate neutrino interactions (electronic detectors).
 - 4. Identify muons to reduce charm background (electronic detectors).

OPERA: hybrid detector (emulsions + electronic detectors)

C. Jollet (IPHC)

τ identification

The OPERA detector

Event reconstruction: Electronic Detectors (ED)

- Selection of contained and «on time» with CNGS beam spill.
- Track (muon) reconstruction and event classification as CC-like (Ι μ) or NC-like (0 μ).
- The information provided by the ED allows to assign to each brick a probability to contain the v interaction (brick finding algorithm).
- Brick removed by BMS (Brick Manipulating System).

C. Jollet (IPHC)

Event reconstruction: ECC brick

- CS analysis: they are scanned looking for a connection with the ED predictions (σ_{pos} ~8 mm, σ_{θ} ~15 mrad).
- If tracks are found, the brick is developed.
- CS to brick connection (σ_{pos} ~70 µm, σ_{θ} ~8 mrad) and scan-back: stopping point definition.
- Volume scan: topological vertex reconstruction and decay search.

Volume scan (about 2 cm³) around the tracks stopping point.

Film to film connection.

Converging tracks (in agreement with the CS).

Backgrounds to $v_{\mu} \rightarrow v_{\tau}$

Kinematical analysis - variables to reduce background:

- Flight length.
- Total p_T of τ daughters with respect to τ direction.
- Missing p_T at primary vertex with respect to the neutrino beam direction.
- Measure of ϕ : angle of τ with respect to hadronic shower in transverse plane to beam.

Status of Data Analysis

- Integrated beam intensity: 17.97×10¹⁹ p.o.t. which corresponds to 20% less than the experimental proposal value (22.5×10¹⁹ p.o.t.).
- 106422 on-time events recorded: 60% are (external) rock events and 20% are interaction in the spectrometers.
- 19505 interactions in the Target, 17057 events are contained in the Target.

years	Beam days	p.o.t (1019)	Status	Selected data sample	number of Decay Searched events
2008-2009	278	5.27	Completed	multi-bricks+all pµ	2783
2010-2011-2012	687	12.7	In progress	l brick+ pμ <15 GeV	2186
Total	965	17.97		~64%	4969

$\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation analysis

• The expected number of events for the scanned statistics is:

Decay channel	expected signal events at Δm ² =2.32 ×10 ⁻³ eV ²		PRELIMINARY	
	Full sample 18 ×10 ¹⁹ p.o.t.	Analysed sample	background analysed sample	Observed events
τ→μ	0.90	0.56	0.026	
τ→e	1.06	0.49	0.065	
τ→h	0.70	0.66	0.045	I
τ→3h	0.99	0.51	0.090	I
Total	3.65	2.22	0.216	3

- 3 observed events in the $\tau \rightarrow h$, $\tau \rightarrow 3h$ and $\tau \rightarrow \mu$ channels.
- The probability to be a background fluctuation is 7.29×10^{-4} .
- This corresponds to a 3.4 σ significance of non-null observation.

$\nu_{\mu} \rightarrow \nu_{\tau}$ control sample: charm events

• Charm lifetime and decay topologies analogous to $\tau \Rightarrow$ Benchmark for τ decay finding efficiency.

• On the 2008-2010 data sample: 50 charm events observed, 53±5 were expected.

Impact Parameter

Decay Length

First candidate

- In the decay search of 2008 and 2009 data we found a v_{τ} candidate (*Phys. Lett. B 691 (2010*) 138).
- The event (0 μ event) passes all selection criteria for the signal and it is classified as a possible decay of a τ into I prong hadron.
- All primary tracks incompatible with muon hypothesis.
- The decay mode is compatible with $\tau \rightarrow \rho (\pi^{-}\pi^{0}) \nu_{\tau}$ which has a branching ratio of 25%.

승규는 것이 아니는 것이 같은 것이 같은 것이 같이 많이		· 그는 그는 그는 것 같아요. 그는 것 같아요. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Variable	Observed	Cut
Kink angle (mrad)	41 ± 2	>20
Decay length (µm)	1335 ± 35	< 2 lead plates
P daughter (GeV/c)	I 2 ⁺⁶ -3	>2
Daughter Pt (MeV/c)	470 ⁺²³⁰ -120	>300
Missing Pt (MeV/c)	570 +320-170	<1000
Φ angle (deg)	173 ± 2	>90

Second candidate

- The event (0 μ event) passes all selection criteria for the signal and it is classified as a possible decay of a τ into 3 prong hadrons (JHEP 1311(2013) 036).
- The primary track (p=2.8±0.7 GeV/c) is incompatible with μ hypothesis (momentum/range correlation).
- All tracks are identified as hadrons.

Variable	Observed	Cut
Kink angle (mrad)	87.4 ± 1.5	>20 & <500
Decay length (µm)	1446 ± 10	< 2600
P daughter (GeV/c)	8.4 ± 1.7	>3
Min. invariant mass (MeV/c²)	960 ± 130	>500 & <2000
Invariant mass(MeV/c²)	800 ± 120	>500 & <2000
Missing Pt (MeV/c)	310 ± 110	<1000
Φ angle (deg)	67.8 ± .	>90

Kinematical variables

Third candidate

- The event (I μ event) (ArXiv:1401.2079) passes all selection criteria for the signal and it is classified as a possible decay of a τ into μ (branching ratio of 17.7%).
- The track at Iry vertex was followed into the downstream brick where it disappears after having crossed 18 lead plates. It is classified as a hadron by its momentum-range correlation.
- The muon (track I) was also found in the CS and it agrees with the μ track reconstructed in the ED. Its charge is negative at 5.6 sigmas.
- The γ attachment to the decay vertex is excluded.

Variable	Observed	Cut
Kink angle (mrad)	245 ± 5	>20 & <500
Decay length (μm)	151 ± 10	< 2600
Pμ (GeV/c)	2.8 ± 0.2	> & < 5
Daughter Pt (MeV/c)	690 ± 50	>250
Φ angle (deg)	155 ± 15	>90

Kinematical variables

$\nu_{\mu \rightarrow} \nu_e$ Analysis

- In the 2008 and 2009 runs a dedicated v_e search was performed.
- Out of 505 neutrino events without muon 19 candidates were found (19.4 expected).
- In the standard 3 flavour scenario, the observation is compatible with a background-only hypothesis.
- A specific analysis for non-standard oscillation at large Δm^2 resulted in a competitive limit (JHEP 1307 (2013) 004).

Standard scenario $(\sin^2(2\theta_{13}) < 0.44)$

Conclusions

- The OPERA detector has been taking physics data successfully for 5 years (2008 2012) corresponding to 17.97×10¹⁹ p.o.t (80% of nominal).
- The detector is still running for cosmic muons data taking.
- Background studies showed good agreement between data and MC.
- $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation results:
 - In the analyzed data three τ candidates have been observed.
 - A significance of 3.4 σ of non-null observation has been obtained (simple counting method).
 - Analysis is on-going: more statistics is expected and some events are under investigation.
 A significance of 4 σ is within reach.
- $\nu_{\mu} \rightarrow \nu_{e}$ oscillation results:
 - 19 v_e events observed for 19.4 expected.
 - Bound on a non standard v oscillation: $sin^2(2\theta_{new}) < 7.2 \times 10^{-3}$ at 90% C.L.
 - With the increase of sample size, OPERA should be able to access the parameter region below $sin^2(2\theta_{new})=5.0\times10^{-3}$.

OPERA collaboration

