New physics and surprises in $B \rightarrow D^{(*)} \tau \bar{\nu}$

Andrey Tayduganov

tayduganov@het.phys.sci.osaka-u.ac.jp

Osaka University
in collaboration with M. Tanaka, Y. Sakaki and R. Watanabe

Rencontres de Moriond 2014

La Thuile, Aosta valley, Italy
March 21, 2014

Outline

(1) Study of the $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ decays : motivation
(2) Constraining New Physics parameters
(3) How to distinguish between various New Physics scenarios

4 Conclusions

- Tree-level (TL) process. Large $\mathcal{B}^{(\mathrm{SM})} \sim(1-2) \%$.

- Tree-level (TL) process. Large $\mathcal{B}^{(\mathrm{SM})} \sim(1-2) \%$.
- TL processes can be sensitive to NP as well as FCNCs.

- Tree-level (TL) process. Large $\mathcal{B}^{(\mathrm{SM})} \sim(1-2) \%$.
- TL processes can be sensitive to NP as well as FCNCs.
- e.g. sensitive to the charged Higgs (2HDM).

- Tree-level (TL) process. Large $\mathcal{B}^{(\mathrm{SM})} \sim(1-2) \%$.
- TL processes can be sensitive to NP as well as FCNCs.
- e.g. sensitive to the charged Higgs (2HDM).
- B-decays with τ in the final state offer possibilities to study NP effects not present in processes with light leptons.

- Tree-level (TL) process. Large $\mathcal{B}^{(\mathrm{SM})} \sim(1-2) \%$.
- TL processes can be sensitive to NP as well as FCNCs.
- e.g. sensitive to the charged Higgs (2HDM).
- B-decays with τ in the final state offer possibilities to study NP effects not present in processes with light leptons.
- Hadronic uncertainties better controlled (or can be!).

- Tree-level (TL) process. Large $\mathcal{B}^{(\mathrm{SM})} \sim(1-2) \%$.
- TL processes can be sensitive to NP as well as FCNCs.
- e.g. sensitive to the charged Higgs (2HDM).
- B-decays with τ in the final state offer possibilities to study NP effects not present in processes with light leptons.
- Hadronic uncertainties better controlled (or can be!).
- Popular NP test via

$$
R(D)=\frac{\mathcal{B}\left(B \rightarrow D \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D \ell \bar{\nu}_{\ell}\right)}, \quad R\left(D^{*}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{*} \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)} \quad \quad \quad(\ell=e, \mu)
$$

in order to cancel/reduce theoretical uncertainties in $V_{c b} /$ FFs.

The BABAR results [arXiv:1205.5442],

$$
\begin{aligned}
& R(D)^{\exp }=0.440 \pm 0.058 \pm 0.042, R(D)^{\mathrm{SM}}=0.297 \pm 0.017 \\
& R\left(D^{*}\right)^{\exp }=0.332 \pm 0.024 \pm 0.018, \quad R\left(D^{*}\right)^{\mathrm{SM}}=0.252 \pm 0.003
\end{aligned}
$$

disagree with the SM at the 3.4σ level (combining with Belle result, we obtain 3.5σ).

[BABAR, arXiv:1303.0571]

The BABAR results [arXiv: 1205.5442],

$$
\begin{aligned}
& R(D)^{\exp }=0.440 \pm 0.058 \pm 0.042, \quad R(D)^{\mathrm{SM}}=0.297 \pm 0.017, \\
& R\left(D^{*}\right)^{\exp }=0.332 \pm 0.024 \pm 0.018, \quad R\left(D^{*}\right)^{\mathrm{SM}}=0.252 \pm 0.003,
\end{aligned}
$$

disagree with the SM at the 3.4σ level (combining with Belle result, we obtain 3.5σ).

[BABAR, arXiv:1303.0571]

Motivation

The BABAR results [arXiv: 1205.5442],

$$
\begin{aligned}
R(D)^{\exp }=0.440 \pm 0.058 \pm 0.042, \quad R(D)^{\mathrm{SM}}=0.297 \pm 0.017 \\
R\left(D^{*}\right)^{\exp }=0.332 \pm 0.024 \pm 0.018, \quad R\left(D^{*}\right)^{\mathrm{SM}}=0.252 \pm 0.003
\end{aligned}
$$

disagree with the SM at the 3.4σ level (combining with Belle result, we obtain 3.5σ).

[BABAR, arXiv:1303.0571]

smth else ?

$\mathcal{H}_{\text {eff }}$ describing the $b \rightarrow c \tau \bar{\nu}_{l}$ process

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\frac{4 G_{F}}{\sqrt{2}} V_{c b}[\underbrace{\delta_{\tau l}}_{\mathrm{SM}}+\underbrace{\left.C_{V_{1}}^{l}\right) \mathcal{O}_{V_{1}}+C_{V_{2}}^{l} \mathcal{O}_{V_{2}}^{l}+C_{S_{1}}^{l} \mathcal{O}_{S_{1}}^{l}+C_{S_{2}}^{l} \mathcal{O}_{S_{2}}^{l}+C_{T}^{l} \mathcal{O}_{T}^{l}}_{\mathrm{NP}}] \\
\mathcal{O}_{V_{1}}^{l}=\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\tau_{L} \gamma_{\mu} \nu_{l L}\right), \quad \mathcal{O}_{V_{2}}^{l}=\left(\bar{c}_{R} \gamma^{\mu} b_{R}\right)\left(\tau_{L} \gamma_{\mu} \nu_{l L}\right), \\
\mathcal{O}_{S_{1}}^{l}=\left(\bar{c}_{L} b_{R}\right)\left(\tau_{R} \nu_{l L}\right), \quad \mathcal{O}_{S_{2}}^{l}=\left(\bar{c}_{R} b_{L}\right)\left(\tau_{R} \nu_{l L}\right), \\
\mathcal{O}_{T}^{l}=\left(\bar{c}_{R} \sigma^{\mu \nu} b_{L}\right)\left(\tau_{R} \sigma_{\mu \nu} \nu_{l L}\right) .
\end{gathered}
$$

- In the $\mathrm{SM}, C_{X}^{l}=0$.
- NO right-handed neutrino.

NB: the pseudotensor operator is not independent of \mathcal{O}_{T} due to the relation $\bar{c} \sigma_{\mu \nu} \gamma_{5} b=-\frac{i}{2} \epsilon_{\mu \nu \alpha \beta} \bar{c} \sigma^{\alpha \beta} b$.

The studied distributions are given by

$$
\begin{aligned}
\frac{d \Gamma\left(\bar{B} \rightarrow D \tau \bar{\nu}_{l}\right)}{d q^{2}}= & \frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3} m_{B}^{3}} q^{2} \sqrt{\lambda_{D}\left(q^{2}\right)}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2} \times\{ \\
& \left|\delta_{\tau l}+C_{V_{1}}^{l}+C_{V_{2}}^{l}\right|^{2}\left[\left(1+\frac{m_{\tau}^{2}}{2 q^{2}}\right) H_{V, 0}^{s 2}+\frac{3}{2} \frac{m_{\tau}^{2}}{q^{2}} H_{V, t}^{s 2}\right] \\
& +\frac{3}{2}\left|C_{S_{1}}^{l}+C_{S_{2}}^{l}\right|^{2} H_{S}^{s 2}+8\left|C_{T}^{l}\right|^{2}\left(1+\frac{2 m_{\tau}^{2}}{q^{2}}\right) H_{T}^{s 2} \\
& +3 \operatorname{Re}\left[\left(\delta_{\tau l}+C_{V_{1}}^{l}+C_{V_{2}}^{l}\right)\left(C_{S_{1}}^{l *}+C_{S_{2}}^{l *}\right)\right] \frac{m_{\tau}}{\sqrt{q^{2}}} H_{S}^{s} H_{V, t}^{s} \\
& \left.-12 \operatorname{Re}\left[\left(\delta_{\tau l}+C_{V_{1}}^{l}+C_{V_{2}}^{l}\right) C_{T}^{l *}\right] \frac{m_{\tau}}{\sqrt{q^{2}}} H_{T}^{s} H_{V, 0}^{s}\right\}
\end{aligned}
$$

where H_{i} are the helicity amplitudes,

$$
H_{i}\left(q^{2}\right) \propto\left\langle D^{(*)}\right| \mathcal{O}_{i}|\bar{B}\rangle
$$

$$
\lambda_{D^{(*)}}=\left(\left(m_{B}-m_{D^{(*)}}\right)^{2}-q^{2}\right)\left(\left(m_{B}+m_{D^{(*)}}\right)^{2}-q^{2}\right)
$$

Distributions (simple yet long formulas)

The studied distributions are given by

$$
\begin{aligned}
& \frac{d \Gamma\left(\bar{B} \rightarrow D^{*} \tau \bar{\nu}_{l}\right)}{d q^{2}}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3} m_{B}^{3}} q^{2} \sqrt{\lambda_{D^{*}}\left(q^{2}\right)}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2} \times\{ \\
&\left(\left|\delta_{l \tau}+C_{V_{1}}^{l}\right|^{2}+\left|C_{V_{2}}^{l}\right|^{2}\right)\left[\left(1+\frac{m_{\tau}^{2}}{2 q^{2}}\right)\left(H_{V,+}^{2}+H_{V,-}^{2}+H_{V, 0}^{2}\right)+\frac{3}{2} \frac{m_{\tau}^{2}}{q^{2}} H_{V, t}^{2}\right] \\
&-2 \mathcal{R} e\left[\left(\delta_{l \tau}+C_{V_{1}}^{l}\right) C_{V_{2}}^{l *}\right]\left[\left(1+\frac{m_{\tau}^{2}}{2 q^{2}}\right)\left(H_{V, 0}^{2}+2 H_{V,+} H_{V,-}\right)+\frac{3}{2} \frac{m_{\tau}^{2}}{q^{2}} H_{V, t}^{2}\right] \\
&+\frac{3}{2}\left|C_{S_{1}}^{l}-C_{S_{2}}^{l}\right|^{2} H_{S}^{2}+8\left|C_{T}^{l}\right|^{2}\left(1+\frac{2 m_{\tau}^{2}}{q^{2}}\right)\left(H_{T,+}^{2}+H_{T,-}^{2}+H_{T, 0}^{2}\right) \\
&+3 \mathcal{R} e\left[\left(\delta_{l \tau}+C_{V_{1}}^{l}-C_{V_{2}}^{l}\right)\left(C_{S_{1}}^{l *}-C_{S_{2}}^{l *}\right)\right] \frac{m_{\tau}}{\sqrt{q^{2}}} H_{S} H_{V, t} \\
&-12 \mathcal{R} e\left[\left(\delta_{l \tau}+C_{V_{1}}^{l}\right) C_{T}^{l *}\right] \frac{m_{\tau}}{\sqrt{q^{2}}}\left(H_{T, 0} H_{V, 0}+H_{T,+} H_{V,+}-H_{T,-} H_{V,-}\right) \\
&\left.+12 \mathcal{R} e\left[C_{V_{2}}^{l} C_{T}^{l *}\right] \frac{m_{\tau}}{\sqrt{q^{2}}}\left(H_{T, 0} H_{V, 0}+H_{T,+} H_{V,-}-H_{T,-} H_{V,+}\right)\right\}
\end{aligned}
$$

$$
\lambda_{D^{(*)}}=\left(\left(m_{B}-m_{D^{(*)}}\right)^{2}-q^{2}\right)\left(\left(m_{B}+m_{D^{(*)}}\right)^{2}-q^{2}\right)
$$

Constraints on NP from $R(D) \& R\left(D^{*}\right)$ (example)

Assuming the presence of only one NP type (e.g. either scalar or tensor), we do the χ^{2} fit of $R(D) \& R\left(D^{*}\right)^{B A B A R+\text { Belle }}$ and obtain the constraints on the NP Wilson coefficients:

Several NP "models" can explain the excess of $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ simultaneously \Rightarrow Can we discriminate them?

- R ratios (to be improved at Belle II)

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)}
$$

- τ forward-backward asymmetry,

$$
\begin{gathered}
\mathcal{A}_{\mathrm{FB}}=\frac{\int_{0}^{1} \frac{d \Gamma}{d \cos \theta} d \cos \theta-\int_{-1}^{0} \frac{d \Gamma}{d \cos \theta} d \cos \theta}{\int_{-1}^{1} \frac{d \Gamma}{d \cos \theta} d \cos \theta}=\frac{\int b_{\theta}\left(q^{2}\right) d q^{2}}{\Gamma} \\
\frac{d^{2} \Gamma}{d q^{2} d \cos \theta}=a_{\theta}\left(q^{2}\right)+b_{\theta}\left(q^{2}\right) \cos \theta+c_{\theta}\left(q^{2}\right) \cos ^{2} \theta
\end{gathered}
$$

- τ polarization parameter by studying further τ decays,

$$
P_{\tau}=\frac{\Gamma\left(\lambda_{\tau}=1 / 2\right)-\Gamma\left(\lambda_{\tau}=-1 / 2\right)}{\Gamma\left(\lambda_{\tau}=1 / 2\right)+\Gamma\left(\lambda_{\tau}=-1 / 2\right)}
$$

- D^{*} longitudinal polarization using the $D^{*} \rightarrow D \pi$ decay,

$$
P_{D^{*}}=\frac{\Gamma\left(\lambda_{D^{*}}=0\right)}{\Gamma\left(\lambda_{D^{*}}=0\right)+\Gamma\left(\lambda_{D^{*}}=1\right)+\Gamma\left(\lambda_{D^{*}}=-1\right)}
$$

How to distinguish between NP scenarios : correlations (illustration)

Applying the constraints on $C_{S_{2}}^{\tau}$ or C_{T}^{τ} from the χ^{2} fit of $R(D) \& R\left(D^{*}\right)$ at 3σ level,

[Sakaki, Tanaka, AT, Watanabe('13), arXiv: 1309.0301]

Measurements of these observables in addition to more precise determination of $R\left(D^{(*)}\right)$ are the key issue in order to identify the origin of the present excess of $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$.

BUT this is NOT an easy experimental task ©

- To reduce the FF uncertainties, one can explore the q^{2}-dependent ratio

$$
R_{D^{(*)}}\left(q^{2}\right) \equiv \frac{d \mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}\right) / d q^{2}}{d \mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}\right) / d q^{2}}
$$

- For our convenience, to remove the divergence of R_{D} at $q^{2}=\left(m_{B}-m_{D}\right)^{2} \dagger$ and the phase space suppression of $R_{D^{(*)}}$ at $q^{2} \sim m_{\tau}^{2}$, we introduce

$$
\begin{aligned}
R_{D}^{\prime}\left(q^{2}\right) & \equiv R_{D}\left(q^{2}\right) \times \frac{\lambda_{D}\left(q^{2}\right)}{\left(m_{B}^{2}-m_{D}^{2}\right)^{2}} \times\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{-2} \\
R_{D^{*}}^{\prime}\left(q^{2}\right) & \equiv R_{D^{*}}\left(q^{2}\right) \times\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{-2}
\end{aligned}
$$

\dagger Since the μ-mode is supposed to be SM-like, $\mathcal{B}_{\mu}^{-1} \propto\left(H_{V}^{s}\right)^{-2} \propto \lambda_{D}^{-1}\left(q^{2}\right)$.

$R_{D^{*}}^{\prime}\left(q^{2}\right)$
theory

Both $\mathcal{O}_{S_{2}}^{\tau}$ and \mathcal{O}_{T}^{τ} can explain current result on $R(D) \& R\left(D^{*}\right)^{B A B A R+\text { Belle }}$, e.g. :
(1) $C_{S_{2}}^{\tau}=-1.62+0.52 i, C_{i \neq S_{2}}^{\tau}=0$
(1) $C_{T}^{\tau}=0.29+0.16 i, C_{i \neq T}^{\tau}=0$

- Lets make a "fake" experimental data, assuming the model \#1, and test theoretical model \#2. \Rightarrow The χ^{2} fit of binned $R_{D}^{\prime}\left(q^{2}\right)$ and/or $R_{D^{*}}^{\prime}\left(q^{2}\right)$ gives $\chi^{2} / N_{\text {bins }}$,

	D	D^{*}	$D \& D^{*}$
$\int \mathcal{L} d t=426 \mathrm{fb}^{-1}$	28	10	20
$\int \mathcal{L} d t=10 \mathrm{ab}^{-1}$	655	225	456

- Lets make another "fake" experimental data, assuming the model \#2, and test theoretical model \#1. \Rightarrow The χ^{2} fit of binned $R_{D}^{\prime}\left(q^{2}\right)$ and/or $R_{D^{*}}^{\prime}\left(q^{2}\right)$ gives $\chi^{2} / N_{\text {bins }}$,

	D	D^{*}	$D \& D^{*}$
$\int \mathcal{L} d t=426 \mathrm{fb}^{-1}$	39	11	26
$\int \mathcal{L} d t=10 \mathrm{ab}^{-1}$	903	249	600

\Rightarrow Using the $R_{D^{(*)}}^{\prime}\left(q^{2}\right)$ distributions, one can clearly distinguish between the scalar- and tensor-like models at Belle-II in a first couple of years of running !

- Not only FCNC processes can provide a window to NP search. Tree-level decays are as good and often even more interesting, especially when the hadronic uncertainties are well controlled.
© Excess in $\bar{B} \rightarrow D \tau \bar{\nu}$ and $\bar{B} \rightarrow D^{*} \tau \bar{\nu}$, observed by BABAR and Belle, helped discarding 2HDM-II.
- We showed the effects of $R\left(D^{(*)}\right)$ on NP couplings using the generic set of operators.
- Correlations among observables including the longitudinal τ polarizations and the D^{*} polarization are useful in distinguishing among possible NP scenarios. But it is not easy to determine them experimentally.
- The q^{2} dependence of $R_{D^{(*)}}^{\prime}\left(q^{2}\right)$ is also very sensitive to the presence of NP and can provide precise constraints on NP at Belle II.

BACKUP SLIDES

Estimated errors of binned $R^{\prime}\left(q^{2}\right)$ (preliminary)

Comparison of the theoretical and statistical errors at BABAR \& Belle II for various models :

$\left.\int \mathcal{L} d t\right|_{\text {BABAR }}=426 \mathrm{fb}^{-1},\left.\int \mathcal{L} d t\right|_{\text {BelleII }}=40 \mathrm{ab}^{-1}$

- The number of reconstructed signal events in the $i^{\text {th }} q^{2}$ bin is

$$
N_{i}^{\ell}=N_{B \bar{B}} \times \mathcal{B}_{i}^{\ell} \times \varepsilon_{i}^{\ell}, \quad(\ell=\tau, \mu, e)
$$

where $N_{B \bar{B}}=\mathcal{L} \times \sigma\left(e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}\right)=40 \mathrm{ab}^{-2} \times 1.1 \mathrm{nb}=4.4 \times 10^{10}$; ε_{i}^{ℓ} is the efficiency of \{detector resolution, reconstruction, cuts, etc.\}.

- In this way,

$$
R_{i} \equiv \frac{\mathcal{B}_{i}^{\tau}}{\mathcal{B}_{i}^{\mu}}=\frac{N_{i}^{\tau}}{N_{i}^{\mu}} \frac{\varepsilon_{i}^{\mu}}{\varepsilon_{i}^{\tau}}
$$

- Assuming that $N_{\text {tot }}^{\mu} \gg N_{\text {tot }}^{\tau}$ and $\delta N_{i}^{\tau} \approx \sqrt{N_{i}^{\tau}}$, one gets

$$
\delta R_{i}^{\text {stat }} \approx \frac{\delta N_{i}^{\tau}}{N_{i}^{\mu}} \frac{\varepsilon_{i}^{\mu}}{\varepsilon_{i}^{\tau}} \approx \frac{\sqrt{N_{i}^{\tau}}}{N_{i}^{\mu}} \frac{\varepsilon_{i}^{\mu}}{\varepsilon_{i}^{\tau}}=\frac{1}{\sqrt{N_{B \bar{B}} \varepsilon_{i}^{\tau}}} \frac{\sqrt{\mathcal{B}_{i}^{\tau}}}{\mathcal{B}_{i}^{\mu}}
$$

- Naively assuming the efficiency to be constant, ε_{i}^{τ} can be estimated using the BABAR data [arxiv: 1303.0571]:

$$
\begin{aligned}
\varepsilon_{i}^{\tau} \approx \varepsilon_{\mathrm{tot}}^{\tau} & \approx \frac{N_{\text {tot }}^{B A B A R}\left(\bar{B} \rightarrow D^{(*)} \tau(\rightarrow \mu \nu \bar{\nu}) \bar{\nu}\right)}{N_{B \bar{B}}^{B A B A R} \times \mathcal{B}^{B A B A R}\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}\right) \times \mathcal{B}(\tau \rightarrow \mu \nu \bar{\nu})} \\
& =\frac{489(888)}{471 \times 10^{6} \times 1.02(1.76) \% \times 17.8 \%} \simeq 6 \times 10^{-4}
\end{aligned}
$$

$\bar{B} \rightarrow D \tau \bar{\nu}(3 \mathrm{FFs}):$

$$
\begin{aligned}
& H_{V, 0}^{s}\left(q^{2}\right) \equiv H_{V_{1}, 0}^{s}\left(q^{2}\right)=H_{V_{2}, 0}^{s}\left(q^{2}\right)=\sqrt{\frac{\lambda_{D}\left(q^{2}\right)}{q^{2}}} F_{1}\left(q^{2}\right) \\
& H_{V, t}^{s}\left(q^{2}\right) \equiv H_{V_{1}, t}^{s}\left(q^{2}\right)=H_{V_{2}, t}^{s}\left(q^{2}\right)=\frac{m_{B}^{2}-m_{D}^{2}}{\sqrt{q^{2}}} F_{0}\left(q^{2}\right) \\
& H_{S}^{s}\left(q^{2}\right) \equiv H_{S_{1}}^{s}\left(q^{2}\right)=H_{S_{2}}^{s}\left(q^{2}\right)=\frac{m_{B}^{2}-m_{D}^{2}}{m_{b}-m_{c}} F_{0}\left(q^{2}\right) \\
& H_{T}^{s}\left(q^{2}\right) \equiv H_{T,+-}^{s}\left(q^{2}\right)=H_{T, 0 t}^{s}\left(q^{2}\right)=-\frac{\sqrt{\lambda_{D}\left(q^{2}\right)}}{m_{B}+m_{D}} F_{T}\left(q^{2}\right)
\end{aligned}
$$

with hadronic amplitudes defined as,

$$
\begin{aligned}
H_{V_{1,2}, \lambda}^{\lambda_{M}}\left(q^{2}\right) & =\varepsilon_{\mu}^{*}(\lambda)\left\langle M\left(\lambda_{M}\right)\right| \bar{c} \gamma^{\mu}\left(1 \mp \gamma_{5}\right) b|\bar{B}\rangle, \\
H_{S_{1,2}, \lambda}^{\lambda_{M}}\left(q^{2}\right) & =\left\langle M\left(\lambda_{M}\right)\right| \bar{c}\left(1 \pm \gamma_{5}\right) b|\bar{B}\rangle, \\
H_{T, \lambda \lambda^{\prime}}^{\lambda_{M}}\left(q^{2}\right) & =\varepsilon_{\mu}^{*}(\lambda) \varepsilon_{\nu}^{*}\left(\lambda^{\prime}\right)\left\langle M\left(\lambda_{M}\right)\right| \bar{c} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) b|\bar{B}\rangle
\end{aligned}
$$

where λ_{M} and λ denote the meson and virtual intermediate boson helicities in the B rest frame respectively.

$$
\begin{aligned}
& \bar{B} \rightarrow D^{*} \tau \bar{\nu}(7 \mathrm{FFs}): \\
& H_{V, \pm}\left(q^{2}\right) \equiv H_{V_{1}, \pm}^{ \pm}\left(q^{2}\right)=-H_{V_{2}, \mp}^{\mp}\left(q^{2}\right)=\left(m_{B}+m_{D^{*}}\right) A_{1}\left(q^{2}\right) \mp \frac{\sqrt{\lambda_{D^{*}}\left(q^{2}\right)}}{m_{B}+m_{D^{*}}} V\left(q^{2}\right) \\
& H_{V, 0}\left(q^{2}\right) \equiv H_{V_{1}, 0}^{0}\left(q^{2}\right)=-H_{V_{2}, 0}^{0}\left(q^{2}\right)=\frac{m_{B}+m_{D^{*}}}{2 m_{D^{*}} \sqrt{q^{2}}}\left[-\left(m_{B}^{2}-m_{D^{*}}^{2}-q^{2}\right) A_{1}\left(q^{2}\right)\right. \\
& \left.+\frac{\lambda_{D^{*}}\left(q^{2}\right)}{\left(m_{B}+m_{\left.D^{*}\right)^{2}}\right.} A_{2}\left(q^{2}\right)\right] \\
& H_{V, t}\left(q^{2}\right) \equiv H_{V_{1}, t}^{0}\left(q^{2}\right)=-H_{V_{2}, t}^{0}\left(q^{2}\right)=-\sqrt{\frac{\lambda_{D^{*}\left(q^{2}\right)}^{q^{2}}}{2}} A_{0}\left(q^{2}\right) \\
& H_{S}\left(q^{2}\right) \equiv H_{S_{1}}^{0}\left(q^{2}\right)=-H_{S_{2}}^{0}\left(q^{2}\right)=-\frac{\sqrt{\lambda_{D^{*}\left(q^{2}\right)}^{m}}}{m_{b}+m_{c}} A_{0}\left(q^{2}\right) \\
& H_{T, \pm}\left(q^{2}\right) \equiv \pm H_{T, \pm t}^{ \pm}\left(q^{2}\right)=\frac{1}{\sqrt{q^{2}}}\left[\pm\left(m_{B}^{2}-m_{D^{*}}^{2}\right) T_{2}\left(q^{2}\right)+\sqrt{\lambda_{D^{*}}\left(q^{2}\right)} T_{1}\left(q^{2}\right)\right] \\
& H_{T, 0}\left(q^{2}\right) \equiv H_{T,+-}^{0}\left(q^{2}\right)=H_{T, 0 t}^{0}\left(q^{2}\right)=\frac{1}{2 m_{D^{*}}}\left[-\left(m_{B}^{2}+3 m_{D^{*}}^{2}-q^{2}\right) T_{2}\left(q^{2}\right)\right. \\
& \left.\quad+\frac{\lambda_{D^{*}}^{2}\left(q^{2}\right)}{m_{B}^{2}-m_{D^{*}}^{2}} T_{3}\left(q^{2}\right)\right]
\end{aligned}
$$

