

Evidence for Higgs Boson Decays to a Pair of τ-Leptons

Introduction

- BEH mechanism major ingredient of the SM
 - Spontaneous breaking of the U(1)_Y⊗SU(2)_L symmetry generating W,Z mass terms
 - Lepton masses generated via independent Yukawa couplings

UNI FREIBURG

 $V(\phi^{\dagger}\phi) = \mu^2 \phi^{\dagger}\phi + \lambda (\phi^{\dagger}\phi)^2$

V(Φ)

 $\mathcal{L}_{\text{Yukawa}} = -\frac{\lambda_f v}{\sqrt{2}} \bar{f} f - \frac{\lambda_f}{\sqrt{2}} \bar{f} f H \mathbf{\lambda}_{\text{f}} \sim \mathbf{m}_{\text{f}}$

- Huge progress in the past 2 years
 - Discovery (γγ, ZZ*, WW*) ✓
 - Mass measurement ($m_{H} \sim$ 125.5 \pm 0.7 GeV) \checkmark
 - Coupling measurements (all SM like so far) ✓
 - Spin determination (strong preference for 0^+) \checkmark
 - Coupling to fermions assessed via loop contributions so far
 - Direct confirmation of fermionic couplings important for identification as SM Higgs boson

ATLAS m _H = 125.5 GeV		+ σ(stat) σ(sys) σ(theo)		Total uncertainty $tag{\pm} 1\sigma$ on μ		
Η → γγ	$\mu = 1.55^{+0.33}_{-0.29}$	±0.23 ±0.21				
Low p _{Tt}	$\mu = 1.6_{-0.4}^{+0.5}$	±0.15 ±0.3	_ · · ·			
High p _{Tt}	$\mu = 1.7^{+0.7}_{-0.6}$	±0.5		-		
2 jet high mass (VBF)	$\mu = 1.9_{-0.6}^{+0.8}$	±0.6				
VH categorie	s $\mu = 1.3^{+1.2}_{-1.1}$	±0.9	-			
H → ZZ* -	\rightarrow 4 $\mu = 1.43^{+0.40}_{-0.35}$	±0.33 ±0.17 ±0.14				
VBF+VH-like categories	$\mu = 1.2_{-0.9}^{+1.6}$	+ 1.6 - 0.9				
Other categories	$\mu = 1.45_{-0.36}^{+0.43}$	±0.35		—		
H → WW*	$F \rightarrow \mathbf{b} \mathbf{b} \mathbf{b}$ $\mu = 0.99^{+0.31}_{-0.28}$	±0.21 ±0.21 ±0.12		H		
0+1 jet	$\mu = 0.82_{-0.32}^{+0.33}$	±0.22		╺╾╋╤┥		
2 jet VBF	$\mu = 1.4_{-0.6}^{+0.7}$	±0.5				
Comb. H→γ	γ, ZZ*, WW* μ = 1.33 ^{+0.21} _{-0.18}	±0.14 ±0.15 ±0.11				
√s = 7 TeV ∫Lo	dt = 4.6-4.8 fb	., Č)	1	2	· •
√s = 8 TeV ∫Lo	$dt = 20.7 \text{ fb}^{-1}$			Sign	al streng ⁻	th (μ
			Phy	s. Lett.	B 726 (20	13) 8

Higgs Boson Production @ LHC

Rencontres de Moriond EW - H→ττ

Categorization

- Very loose preselection
- Categorization exploiting signal-sensitive phase-space:
- VBF category (VBF signal fraction 55% -75%)
 - Identified by 2 well separated jets
- High p_T category (Gluon-fusion signal fraction 70% 75%)
 - Large transverse momentum of Higgs Boson candidate

ATLAS-CONF-2013-108

Discriminating Variables & Signal Extraction

- Combining up to 9 variables in Boosted Decision Trees
- Exploiting correlations across variables
- Extensively validated in control regions

- Multiple variables needed to suppress them
 - Z→ττ: VBF tagging-jets topology
 - Misidentified τ 's: Use angular variables

Results

ATLAS Higgs combination

- $H \to \tau \tau$ contributes majorly to the overall ATLAS coupling fits
 - particularly constraining the signal strength in VBF production

BURG

IREI

Event Selection

- Exactly **1 e/µ**
- Exactly 1 hadronic tau
- Opposite charge
- Single lepton trigger
- or tau+lepton trigger

- Exactly 2 hadronic taus
 - At least one of them passing a
 - tighter ID criteria (~40% signal eff.)

ATLAS Preliminary-

 $50 \times H(125) \rightarrow \tau \tau$

Data

Ζ→ττ

Others

Multijet

Uncert.

120

140

m^{vis}_{ττ} [GeV]

Opposite charge

L dt = 20.3 fb⁻¹ \s = 8 TeV

60

80

Di-tau trigger

0.000 τ_{had} τ_{had} Preselection

⁹7000

Events /

5000

4000

3000

2000

1000

0

40

- Exactly 2 light leptons
 - 30 GeV < m_{II} < 75 GeV (same flavour)
 - 30 GeV < $m_{\rm H}$ < 100 GeV (diff. flavour)
- No hadronic taus
- Opposite sign
- Single electron trigger
- Di-lepton trigger

100

Mass Compatibility

- Weighting each event by In(1+ S/B) of its corresponding BDT bin
- Visualizing the compatibility of the observed excess with a Higgs Boson of 125 GeV
 - In(1+S/B) w. Events / 10 GeV ATLAS Preliminary 70È Data $H(125) \rightarrow \tau \tau \; (\mu=1.4)$ $H\!\!\rightarrow\tau\tau\;VBF\text{+}Boosted$ 60 $Z \rightarrow \tau \tau$ $L dt = 20.3 \text{ fb}^{-1}$ Others 50 Fakes vs = 8 TeV ////, Uncert. 40 30 20 10 C w. Data-Bkg. $H(125) \rightarrow \tau\tau \ (\mu=1.4)$ $H(110) \rightarrow \tau\tau \ (\mu=1.8)$ 10 *H*(150)→ ττ (μ=5.9) 200 60 120 140 160 180 80 100 $m_{\tau\tau}^{MMC}$ [GeV]
- Alternative signal hypothesis are scaled to their fitted signal strength
- .. to focus on the shape difference

ATLAS-CONF-2013-108

Event Yields

ATLAS-CONF-2013-108

Numbers of events in highest BDT-score bin

		Lep-lep	Lep-had	Had-had
	Signal	5.7±1.7	8.7±2.5	8.8±2.2
א א ד א	Bckg	13.5±2.4	8.7±2.4	11.8±2.6
	Data	19	18	19
g	Signal	2.6±0.8	8.0±2.5	3.6±1.1
oste	Bckg	20.2±1.8	32±4	11.2±1.9
ñ	Data	20	34	15

- ATLAS observes a significant excess of events in all decay channels
- Corresponding to 4.1 σ @ 125 GeV (with 3.2 σ expected)

Categorisation

Selection	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
$p_{\mathrm{T}}(j_1) > (\mathrm{GeV})$	40	50	50
$p_{\mathrm{T}}(j_2) > (\mathrm{GeV})$	30	30	30/35
$\Delta \eta(j_1, j_2) >$	2.2	3.0	2.0
b-jet veto for jet $p_{\rm T} > (\text{GeV})$	25	30	-
$p_{\rm T}^H > ({\rm GeV})$	-	-	40
$p_{\rm T}(i_1) > ({\rm GeV})$	40	_	_

			•••	
	$p_{\rm T}(j_2) > ({\rm GeV})$	30	30	30/35
VBF	$\Delta\eta(j_1, j_2) >$	$p_{\rm T} > ({\rm GeV}) = \begin{array}{c} 30 & 30 \\ 2.2 & 3.0 \\ 25 & 30 \\ - & - \\ 40 & - \\ 100 & 100 \\ 100 \\ 100 \\ 25 & 30 \\ \end{array}$	2.0	
	b-jet veto for jet $p_{\rm T} > ({\rm GeV})$	25	30	-
	$p_{\rm T}^H > ({\rm GeV})$	-	-	40
	$p_{\mathrm{T}}(j_1) > (\mathrm{GeV})$	40	-	-
Boosted	$p_{\rm T}^H > ({\rm GeV})$	100	100	100
Boosted $\begin{bmatrix} p \\ p \\ b \end{bmatrix}$	b-iet veto for iet $p_{\rm T} > ({\rm GeV})$	25	30	-

Table 2: Selection criteria applied in each analysis category for each channel. Only event that fail VBF category selection are considered for the boosted category. Events in the $\tau_{\text{lep}}\tau_{\text{had}}$ VBF category must also satisfy $m_{\text{vis}}^{\tau\tau} > 40$ GeV, and those that fail this requirement are not considered for the $\tau_{\text{lep}}\tau_{\text{had}}$ boosted category. The $\tau_{\text{had}}\tau_{\text{had}} p_{\text{T}}(j_2)$ threshold is 30 (35) GeV for jets within (outside of) $|\eta| < 2.4$.

Category

• Impact of dominating uncertainties on the measured signal strength

Source of Uncertainty	Uncertainty on μ
Signal region statistics (data)	0.30
$Z \rightarrow \ell \ell$ normalization ($\tau_{\text{lep}} \tau_{\text{had}}$ boosted)	0.13
ggF $d\sigma/dp_T^H$	0.12
JES η calibration	0.12
Top normalization ($\tau_{lep}\tau_{had}$ VBF)	0.12
Top normalization ($\tau_{lep} \tau_{had}$ boosted)	0.12
$Z \rightarrow \ell \ell$ normalization ($\tau_{\text{lep}} \tau_{\text{had}} \text{ VBF}$)	0.12
QCD scale	0.07
di- $ au_{had}$ trigger efficiency	0.07
Fake backgrounds ($\tau_{lep}\tau_{lep}$)	0.07
$ au_{\rm had}$ identification efficiency	0.06
$Z \rightarrow \tau^+ \tau^-$ normalization ($\tau_{\rm lep} \tau_{\rm had}$)	0.06
$ au_{ m had}$ energy scale	0.06

Table 7: The important sources of uncertainty on the measured signal strength parameter μ , given as absolute uncertainties on μ .

BURG

ATLAS-CO

Input Variables

Variable	VBF		Boosted			
Variable	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
$m_{ au au}^{ m MMC}$	•	٠	٠	•	٠	•
$\Delta R(\tau, \tau)$	•	٠	٠		٠	•
$\Delta \eta(j_1, j_2)$	•	٠	٠			
m_{j_1, j_2}	•	٠	٠			
$\eta_{j_1} imes \eta_{j_2}$		٠	٠			
$p_{\mathrm{T}}^{\mathrm{Total}}$		•	•			
sum <i>p</i> _T					•	•
$p_{\mathrm{T}}(\tau_1)/p_{\mathrm{T}}(\tau_2)$					•	•
$E_{\rm T}^{\rm miss}\phi$ centrality		•	٠	•	•	•
$x_{\tau 1}$ and $x_{\tau 2}$						•
$m_{ au au,j_1}$				•		
m_{ℓ_1,ℓ_2}				•		
$\Delta \phi_{\ell_1,\ell_2}$				•		
sphericity				•		
$p_{\mathrm{T}}^{\ell_1}$				•		
$p_{\mathrm{T}}^{j_1}$				•		
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$				•		
m _T		٠			٠	
$\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$	•					
$j_3 \eta$ centrality	•					
$\ell_1 \times \ell_2 \eta$ centrality	•					
$\ell \eta$ centrality		•				
$\tau_{1,2} \eta$ centrality			•			

Table 3: Discriminating variables used for each channel and category. The filled circles identify which variables are used in each decay mode. Note that variables such as $\Delta R(\tau, \tau)$ are defined either between the two leptons, between the lepton and τ_{had} , or between the two τ_{had} candidates, depending on the decay mode.

Mass Reconstruction

• Scaling it with a fake rate measurement: Shape & yield can be extrapolated into signal region

- Fake Factor measured separately in a W and a QCD control region
 - combined into effective fake rate (estimated fractional W/QCD contribution in SR)
 - Large (~30%) uncertainties due to unknown q/g fractions in signal region

UNI FREIBURG

ATLAS-CONF-2013-108

Fake Estimate HadHad

- A Multijet template is built from not opposite sign events
 - Charge (τ_1) * Charge $(\tau_2) >= 0$
- Enhanced in Multijet background due to little charge correlation
- Normalization extracted in combined Fit
 - $\Delta\eta$ (τ_1, τ_2) included in the fit for its separation power between
 - $Z \rightarrow \tau \tau$ and the Multijet background

Additional Control Region BDTs LepLep

