

The GERDA Experiment and the Search for Neutrinoless Double Beta Decay

> Björn Lehnert (on behalf of the GERDA Collaboration)

Moriond, La Thuille, 17/03/2014

Institut für Kern- und Teilchenphysik

Double Beta Decay Experiments

The GERDA Collaboration

The GERDA Collaboration

GERDA: GERmanium Detector Array

Idea: Operate HPGe detectors naked in liquid argon (LAr)Liquid argon serves as cooling, shielding and active veto

GERDA Physics Phases

<u>Phase I: Nov 12 - May 13</u>

- 8 coaxial detectors from Heidelberg Moscow and IGEX
- \bullet ~18 kg enriched germanium (86%)
- $\Delta E \sim 4.5 \text{ keV} @2.6 \text{ MeV}$
- 5 BEGe's deployed in Phase I since June 2012
- \bullet Background: 10⁻² cts/(keV kg yr)
- Exposure 21.6 kg yr
- Blind analysis

Phase II: Start during 2014

- \bullet 30 additional enriched BEGe Detectors
- \bullet Additional ${\sim}20~{\rm kg}$ enriched germanium
- Enhanced pulse-shape properties and ΔE (FWHM ~3 keV @2.6 MeV)
- Background aim: $10^{-3} \text{ cts}/(\text{keV kg yr})$
- \bullet Exposure aim >100 kg yr to explore $10^{26}~{\rm yr}$ range

Moriond, 17/03/14

Bjoern Lehnert

6

Backgrounds and Mitigation Strategies

Background sources

- Natural radioactivity (²³²Th, ²³⁸U chains)
 - \bullet y-rays (e.g. $^{208}\mathrm{Tl},\,^{214}\mathrm{Bi})$
 - \bullet alpha-emitters on surface (^210Po, ^222Rn)
- Cosmogenic isotopes (⁶⁸Ge, ⁶⁰Co)
- Long-lived cosmogenic Ar isotopes (⁴²Ar, ³⁹Ar)

Mitigation strategies

- Underground location: muons, cosmogenic isotopes
- Water tank and Cherenkov-veto: neutrons, muons
- Detector anti-coincidence: y-rays
- Time-coincidence: BiPo
- Pulse-shape discrimination: surface events and y-rays
- LAr scintillation veto [Phase II]

Bjoern Lehnert

Duty Cycle and Data Sets for Phase I

Phase I Spectrum and Background Model

arXiv:1306.5084 doi:10.1140/epjc/s10052-014-2764-z

Main features:

- \bullet $^{39}\mathrm{Ar}$ (565 keV $\beta,$ 1 Bq/l LAr)
- $2\nu\beta\beta$ (GERDA measurement):

$$T_{1/2}^{2\nu} = (1.84^{+0.09}_{-0.08} \text{ fit } {}^{+0.11}_{-0.06} \text{ syst}) \cdot 10^{21} \text{ yr}$$

Bjoern Lehnert

J.Phys.G 40 (2013) 035110

- \bullet $^{42}\mathrm{Ar},\,^{42}\mathrm{K}$ decay chain from inside LAr
- \bullet Alphas on surface of \mathbf{p}^+ contact
- Decay chain y-lines: reduced by factor 10 compared to Heidelberg-Moscow experiment

Phase I Spectrum and Background Model

arXiv:1306.5084 doi:10.1140/epjc/s10052-014-2764-z

Moriond, 17/03/14

Bjoern Lehnert

10

GERDA 0vbb Results

Phys. Rev. Lett 111 (2013) 122503

• Unblinding of data after all analysis parameters and methods were fixed

- Analysis cuts applied (Survival fraction around $Q_{\beta\beta}$)
- 1. Quality cuts (> 99%)
- 2. Detector anti-coincidence ($\approx 65\%$)
- 3. Muon-veto ($\approx 95\%$)
- 4. Time coincidence ($\approx 100\%$)
- 5. Pulse Shape cut ($\approx 50\%$)
- No peak in spectrum observed

Exposure

[kg yr]

17.3

1.3

2.4

• GERDA improves limit

Moriond, 17/03/14

Data set

Golden

Silver

BEGe

Bjoern Lehnert GERDA: Search for 0vßß

GERDA $0\nu\beta\beta$ Results: Setting a Limit

Frequentist analysis (baseline result)

- Maximum likelihood spectral fit on 3 subsets with common $(T_{1/2})^{-1}$: Best fit n=0
- Profile likelihood result:

$$T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \,\mathrm{yr}$$
 at 90% C.L.

•Median sensitivity: $T_{1/2}^{0\nu} > 2.4 \cdot 10^{25} \,\mathrm{yr}$ at 90% C.L.

 $\begin{array}{l} \textbf{Combination} \ \ {}^{76}\textbf{Ge:} \\ (\text{GERDA} + \text{HdM} + \text{IGEX}) \end{array}$

$$T_{1/2}^{0\nu} > 3.0 \cdot 10^{25} \,\mathrm{yr}$$
 at 90% C.L.

GERDA 0vbb Results: Comparing with Claim

Not comparing to $T_{1/2}$ claim in Mod. Phys. Lett. 21 (2006) 157 because of inconsistencies in analysis (missing efficiencies) as pointed out in Ann. Phys. 525 (2013) 269

GERDA 0vbb Results: Comparing with Claim Different NME calculations for light Fixed neutrino mass Majorana neutrino dominance at 0.4, 0.3, 0.2 eV **GERDA 14-01** F ORPA-B (⁷⁶Ge) [10²⁵) ORPA Combined ⁷⁶Ge: EDF ISM • Bayes factor: 90% C.L. lower limit T^{0v} ${ m P(H_1)/P(H_0)}=2 \cdot 10^{-4}$ ⁷⁶Ge combined GERDA Combined ⁷⁶Ge+¹³⁶Xe:

Samland-Z

2

EXO-200

• Comparison via matrix elements

• Bayes factor (EXO old):

 ${
m P(H_1)/P(H_0)}=2.2\cdot 10^{-3}$

Bjoern Lehnert

Moriond, 17/03/14

2

Heidelberg-Moscow

IGEX

90% C.L. lower limit T^{0v}_{1/2} (¹³⁶Xe) [10²⁵ yr]

Claim (2004)

Conclusion

- GERDA published Phase I results of blind analysis 21.6 kg yr and 0.01 cts/(keV kg yr)
 - GERDA Phase I: $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr at } 90\% \text{ C.L.}$
 - ⁷⁶Ge (+IGEX+HdM): $T_{1/2}^{0\nu} > 3.0 \cdot 10^{25} \text{ yr at } 90\% \text{ C.L.}$
 - $\bullet~|m_{ee}|\,<\,0.2$ 0.4~eV (depending on matrix element)
 - Previous $0\nu\beta\beta$ claim only explained with 1% probability by GERDA in a model independent way
- Phase II transition ongoing. Main improvements:
 - Additional 20 kg BEGe detectors
 - Liquid argon scintillation veto

BACKUP