

Rencontres de Moriond EW 2014 21/3/2014 - La Thuile

Evidence of the SM Higgs in the decay channel into τ leptons

Riccardo Manzoni on behalf of the CMS collaboration

<u>http://arxiv.org/abs/arXiv:1401.5041</u> https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13004PubTWiki

Full CMS Run I data analyzed: 4.9 fb⁻¹ @ 7 TeV, 19.7 fb⁻¹ @ 8 TeV

- all di-t final states ($\mu \tau_h$, $e \tau_h$, $\tau_h \tau_h$, $e \mu$, $\mu \mu$, e e) analyzed
- shape analysis
 - di-tau invariant mass $m_{\tau\tau}$ (SVfit algorithm)
- categories with low S/B constrain nuisance parameters

Physics objects

Particle Flow reconstruction

- · combines infos from all sub-detectors
- produces a collection of unambiguous, stable particles
- electrons, muons
- hadronically-decaying taus
 - HPS algorithm reconstructs the different decay modes
- jets
 - multivariate discriminant against Pile Up
- multivariate E_T^{miss} regression
 - discriminates signal from bkgs (W+Jets, ttbar)
 - used to estimate the invariant mass of parent boson (SVfit algorithm)

Combined mass distribution

Significance and *p*-value

At m_H = 125 GeV obs. 3.20 σ (exp. 3.73 σ)

Max at $m_{\rm H} = 120 \text{ GeV}$ obs. 3.32 σ (exp. 3.72 σ)

Signal strength for $m_H = 125$ GeV

per channel

per category

Best-fit $\mu = 0.78 \pm 0.27$

CMS

li Fisica Nuclear

Properties: couplings

Properties: mass

Best-fit mass $m_H = 122 \pm 7 \text{ GeV}$

Compatible with SM Higgs at $m_H = 125.6$ GeV

Conclusions

Evidence for $H \rightarrow \tau \tau$

Evidence for H→fermions $(H \rightarrow \tau \tau + VH \rightarrow b\overline{b})$

Compatible with SM Higgs, $m_H = 125.6$ GeV

Backup

$H \rightarrow \tau \tau$ branching ratios

- Sizable BR($H \rightarrow \tau \tau$) at low m_H (6.3% at m_H = 125 GeV)
- All 6 final states analyzed (in non-VH categories)

Treatment of H→WW

Goal of the analysis is to measure $H \rightarrow \tau \tau$

- H→WW can decay in the same final states and pass the selection
 - especially evident in eµ VBF, negligible otherwise
- HWW at $m_H = 125$ GeV considered as a background throughout (except for couplings)
- HWW at $m_H = 125$ GeV considered as part of the signal for k_V vs. k_f
- k_V constraint mostly from HWW in eµ VBF k_V² (production) * k_V² (decay)

Kinematic selections

_	Channel	HLT requirement	I	Lepton select	ion
_	$\mu \tau_{\rm h}$	μ (12–18) & $\tau_{\rm h}$ (10–20)	$p_{\rm T}^{\mu} > 17-20$	$ \eta^{\mu} < 2.1$	$R^{\mu} < 0.1$
			$p_{\mathrm{T}}^{\hat{\tau}_{\mathrm{h}}} > 30$	$ \eta^{ au_{ m h}} < 2.4$	$I^{ au_{ m h}} < 1.5$
	eτ _h	$e(15-22) \& \tau_h(15-20)$	$p_{\rm T}^{\rm e} > 20-24$	$ \eta^{\rm e} < 2.1$	$R^{\rm e} < 0.1$
T			$p_{\rm T}^{\tau_{\rm h}} > 30$	$ \eta^{ au_{ m h}} < 2.4$	$I^{\tau_{\rm h}} < 1.5$
	$ au_{\rm h} au_{\rm h}$	$ au_{\rm h}(35)$ & $ au_{\rm h}(35)$	$p_{\rm T}^{ au_{ m h}} > 45$	$ \eta^{ au_{ m h}} < 2.1$	$I^{ au_{ m h}} < 1$
	(2012 only)	$\tau_{\rm h}(30)$ & $\tau_{\rm h}(30)$ & jet(30)			
0	eμ	$e(17) \& \mu(8)$	$p_{\rm T}^{\ell_1} > 20$	$ \eta^{\mu} < 2.1$	$R^\ell < 0.1$ – 0.15
		$e(8) \& \mu(17)$	$p_{\rm T}^{\ell_2} > 10$	$ \eta^{\rm e} < 2.3$	
_	μμ	$\mu(17) \& \mu(8)$	$p_{\rm T}^{\mu_1} > 20$	$ \eta^{\mu_1} < 2.1$	$R^{\mu} < 0.1$
			$p_{\rm T}^{\mu_2} > 10$	$ \eta^{\mu_2} < 2.4$	
_	ee	e(17) & e(8)	$p_{\rm T}^{\rm e_1} > 20$	$ \eta^{\rm e} < 2.3$	$R^{\rm e} < 0.1 - 0.15$
_			$p_{\rm T}^{\rm e_2} > 10$		
-	$\mu + \mu \tau_{\rm h}$	$\mu(17) \& \mu(8)$	$p_{\rm T}^{\mu_1} > 20$	$ \eta^{\mu} < 2.4$	$R^{\mu} < 0.1$ –0.2
			$p_{\rm T}^{\mu_2} > 10$		
			$p_{\mathrm{T}}^{\overline{ au}_{\mathrm{h}}} > 20$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_{ m h}} < 2$
	$e + \mu \tau_h /$	$e(17) \& \mu(8)$	$p_{\rm T}^{\ell_1} > 20$	$ \eta^{\rm e} < 2.5$	$R^\ell < 0.1$ –0.2
	$\mu + e\tau_h$	$e(8) \& \mu(17)$	$p_{\rm T}^{\bar{\ell}_2} > 10$	$ \eta^{\mu} < 2.4$	
3			$p_{\mathrm{T}}^{ ilde{ au}_{\mathrm{h}}} > 20$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_{ m h}} < 2$
_	$\mu + \tau_{\rm h} \tau_{\rm h}$	$\mu(24)$	$p_{\rm T}^{\mu} > 24$	$ \eta^{\mu} < 2.1$	$R^{\mu} < 0.1$
			$p_{\rm T}^{\tau_{h,1}} > 25$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_{ m h}} < 23$
			$p_{\rm T}^{ au_{h,2}} > 20$		
_	$e + \tau_h \tau_h$	$e(20) \& \tau_h(20)$	$p_{\mathrm{T}}^{\mathrm{e}} > 24$	$ \eta^{\rm e} < 2.1$	$R^{\rm e} < 0.1-0.15$
		$e(22) \& \tau_h(20)$	$ p_{\rm T}^{\tau_{h,1}} > 25$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_{ m h}} < 2$
			$p_{\rm T}^{\tau_{h,2}} > 20$		

Resonance	HLT requirement	Lepton selection		
$Z \rightarrow \mu \mu$	$\mu(17) \& \mu(8)$	$p_{\rm T}^{\mu_1} > 20$	$ \eta^{\mu} < 2.4$	$R^{\mu} < 0.3$
		$p_{\rm T}^{\hat{\mu}_2} > 10$		
$Z \rightarrow ee$	e(17) & e(8)	$p_{\rm T}^{\rm e_1} > 20$	$ \eta^{\rm e} < 2.5$	$R^{\rm e} < 0.3$
		$p_{\rm T}^{{ m ilde{e}_2}} > 10$		
$H \rightarrow \mu \tau_h$		$p_{\rm T}^{\mu} > 10$	$ \eta^{\mu} < 2.4$	$R^{\mu} < 0.3$
		$p_{\rm T}^{\tau_{\rm h}} > 15$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_{ m h}} < 2$
$H \rightarrow e \tau_h$		$p_{\rm T}^{\rm e} > 10$	$ \eta^{\rm e} < 2.5$	$R^{\rm e} < 0.2$
		$p_{\mathrm{T}}^{\overline{\tau}_{\mathrm{h}}} > 15$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_h} < 2$
$H \rightarrow \tau_h \tau_h$		$p_{\rm T}^{\tau_{\rm h}} > 15$	$ \eta^{\tau_{\rm h}} < 2.3$	$I^{ au_{\mathrm{h}}} < 1$
		_		
$H \rightarrow e\mu$		$p_{\mathrm{T}}^{\ell} > 10$	$ \eta^{\rm e} < 2.5$	$R^{\ell} < 0.3$
			$ \eta^{\mu} < 2.4$	

Background estimates

The most relevant backgrounds are derived from data or normalized using data sidebands

Excerpt of control plots

Systematics

Uncertainty	Affected processes	Change in acceptance	
Tau energy scale	signal & sim. backgrounds	1–29%	
Tau ID (& trigger)	signal & sim. backgrounds	6–19%	
e misidentified as $ au_h$	$Z \rightarrow ee$	20–74%	
μ misidentified as $ au_h$	$ m Z ightarrow \mu \mu$	30%	
Jet misidentified as $ au_h$	Z + jets	20-80%	
Electron ID & trigger	signal & sim. backgrounds	2–6%	
Muon ID & trigger	signal & sim. backgrounds	2–4%	
Electron energy scale	signal & sim. backgrounds	up to 13%	
Jet energy scale	signal & sim. backgrounds	up to 20%	
$E_{\rm T}^{\rm miss}$ scale	signal & sim. backgrounds	1–12%	
ε_{b-tag} b jets	signal & sim. backgrounds	up to 8%	
ε_{b-tag} light-flavoured jets	signal & sim. backgrounds	1–3%	
Norm. Z production	Z	3%	
m Z ightarrow au au category	m Z ightarrow au au	2–14%	
Norm. $W + jets$	W + jets	10-100%	
Norm. t ī	tī	8–35%	
Norm. diboson	diboson	6–45%	
Norm. QCD multijet	QCD multijet	6–70%	
Shape QCD multijet	QCD multijet	shape only	
Norm. reducible background	Reducible bkg.	15–30%	
Shape reducible background	Reducible bkg.	shape only	
Luminosity 7 TeV (8 TeV)	signal & sim. backgrounds	2.2% (2.6%)	
PDF (qq)	signal & sim. backgrounds	4–5%	
PDF (gg)	signal & sim. backgrounds	10%	
Norm. ZZ/WZ	ZZ/WZ	4-8%	
Norm. $t\bar{t} + Z$	$t\bar{t} + Z$	50%	
Scale variation	signal	3–41%	
Underlying event & parton shower	signal	2-10%	
Limited number of events	all	shape only	

di-τ mass reconstruction (SVFit)

- Kinematic maximum likelihood fit to estimate mass of ττ system
- Estimated on event-by-event basis using four-momenta of visible decay products, E_x^{miss} , E_y^{miss} , and expected E_T^{miss} resolution
- **10-20% resolution** on reconstructed $m_{\tau\tau}$ depending on channel/category

SVFit di- τ mass is used as mass discriminator for the statistical interpretation for $\mu \tau_h$, $e \tau_h$, $e \mu$, $\tau_h \tau_h$ channels

Event classification @ 8 TeV

/	7	CMS/
INF	N Istituto Nazionale	\geq
\smile	di Fisica Nucleare sezione Wilano Bicocca	

		0-jet	1-jet		2-	2-jet	
				p _T π > 100 GeV	m _{jj} > 500 GeV Δη _{jj} > 3.5	p _T π > 100 GeV m _{jj} > 700 GeV Δη _{jj} > 4.0	
UT.	$p_T(\tau_h) > 45 \text{ GeV}$	high p _T (τ _h)	high p _T (τ _h)	high p _T (τ _h) boost		tight VBE tag	
r ∙ • h	baseline	low $p_T(\tau_h)$	low	p _T (τ _h)	VBF tag	(2012 only)	
еть	$p_{T}(\tau_{h}) > 45 \text{ GeV}$	high p _T (τ _h)	high p _t (t _h)	high p _T (τ _h) boost	loose	tight VBE tag	
11	baseline	low $p_T(\tau_h)$	low	p _T (T _h)	VBF tag	(2012 only)	
			$E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 G	GeV			
eµ	p _T (μ) > 35 GeV	high p _T (μ)	high	p _T (µ)	loose	tight	p_{2}^{2}
	baseline	low p _T (µ)	low	ρ _T (μ)	VBF tag	(2012 only)	
ee, µµ	p _T (l) > 35 GeV	high p _T (l)	high	n p _T (l)		.iot	
	baseline	low p _T (l)	low p _T (l)		2 jot		
τ _h τ _h							
			boost	large boost	VB	⁼ tag	
	baseline		p _T ^π > 100	p _T π > 170	p _T π > 100 GeV		
			GeV	GeV	m _{jj} > 500 GeV Δη _{ii} > 3.5		

Higgs candidate transverse momentum $p_T^{\tau\tau} = |\vec{p}_T(L) + \vec{p}_T(L') + E_T^{miss}|$

Mass distributions: $\mu \tau_h$ as a benchmark

- **0-jet** categories have large statistics but low S/B and thus provide good constraints for the main uncertainties
 - Tau ID efficiency
 - Tau Energy Scale
 further constrained within the uncertainties of the method in slide <u>3</u>
- **1-jet** (boosted) categories show better $m_{\tau\tau}$ resolution and <u>good sensitivity</u>
- 2-jets (VBF) categories show low bkg contamination and good S/B

CMS.

Combined observed and predicted distributions of the decimal logarithm log(S/(S+B)) in each bin of the final $m_{\tau\tau}$, m_{vis} , or discriminator distributions obtained in all event categories and decay channels

Excess compatible with SM Higgs signal at $m_H = 125$ GeV

Limits

Observed limit is 1.26 x σ_{SM} at $m_H = 125$ GeV

Excess compatible with SM Higgs signal at m_H = 125 \text{ GeV}

Expected significance

The observed significance (solid line) is compared to the uncertainty bands on the expectation for a SM Higgs boson with $m_H = 125$ GeV.

Expected sensitivity

- 1-Jet and 2-Jets (VBF) have approximatively the same sensitivity for $m_H > 110 \text{ GeV}$
- VH contributes significantly for $m_{\text{H}} < 110 \text{ GeV}$

- Approaching sensitivity to SM Higgs in single channels
 - exp. limit $m_H = 125 \text{ GeV}$
 - μτ_h 0.86 x σ_{SM}
 - eth 1.28 x σ_{SM}
 - τ_hτ_h 1.29 x σ_{SM}

$H \rightarrow \tau \tau$ and $VH \rightarrow b\overline{b}$ combination

http://arxiv.org/abs/1401.6527

https://twiki.cem.ch/twiki/bin/view/CMSPublic/Hig13033PubTWiki

channel	signifi	cance	heat fit u	
m _н = 125 GeV	expected	observed	best iit µ	
VH→bb	2.3	2.1	1.0 ± 0.5	
Η→ττ	3.7	3.2	0.78 ± 0.27	
combined	4.4	3.8	0.83 ± 0.24	

evidence of Higgs couplings to down type fermions