$$\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W_\mu^+ W^{-\mu} H + \kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\mu\nu} H + \kappa_{\gamma} \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_{Z\gamma} \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H + \kappa_{VV} \frac{\alpha}{2\pi v} \left(\cos^2 \theta_W Z_{\mu\nu} Z^{\mu\nu} + 2 W_{\mu\nu}^+ W^{-\mu\nu} \right) H - \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_{\tau} \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) H.$$

Eilam Gross, Weizmann Institute of Science HIGGS COUPLINGS

Acknowledgements : Marumi Kado, Yossi Nir, Michael Duehrssen, Marco Pieri, Pierre Savard, Liron Barak

Higgs Ringing Down the Years (Moriond)

- 2000 SM neutral Higgs search
- 2001 Higgs in OPAL, DELPHI, ALEPH
- 2002 LEP Higgs boson searches
- 2003
- 2004
- 2005
- 2006
- 2007 Higgs searches in Tevatron
- 2008
- 2009 Low mass SM Higgs (Tevatron)
- 2010 Session: The Higgs at the Tevatron. Review: Higgsless Universe
- 2011 Higgs Boson Searches with ATLAS based on the 2010 Data
- 2012 Results from ATLAS, CMS
- 2013 Study of BEH Production in Bosonic decay channels in CMS, BEH detection to boson pairs in ATLAS
- 2014 Higgs Properties, Higgs Couplings (this talk)

Bibliography of this Talk

ATLAS

Combinations (and refs therein)

Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, PLB 726 (2013) 88–119

Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb—1 of proton-proton collision data, ATLAS-CONF-2014-009

New Constraints on New Phenomena via Higgs Coupling Measurements with the ATLAS Detector ATLAS-CONF-2014-010

Differential cross sections of the Higgs boson measured in the diphoton decay channel using 8 TeV pp collisions, ATLAS-CONF-2013-072 Zgamma -Search for Higgs boson decays to a photon and a Z boson... arXiv:1402.3051v1 (hep-ex)

Bibliography of this Talk -CMS Combinations (refs therein)

Measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005, July 2013

Evidence for the direct decay of the 125 GeV Higgs boson to ferminos arXiv:1401.6527v1 [hep-ex]

Individual channels (published)

HZZ http://arxiv.org/pdf/1312.5353.pdf

HWW http://arxiv.org/pdf/1312.1129.pdf J. High Energy Phys. 01 (2014) 096

Hbb http://arxiv.org/pdf/1310.3687.pdf Phys. Rev. D 89 (2014) 012003 Htautau http://arxiv.org/pdf/1401.5041.pdf

Zgamma http://arxiv.org/pdf/1307.5515.pdf Phys. Lett. B 726 (2013) 587–609

Decay to fermions http://arxiv.org/pdf/1401.6527.pdf

New Search for a Higgs boson decaying to $\gamma \gamma \rightarrow \mu \mu \gamma$ with dilepton mass below 20 GeV in pp collisions at 8 TeV, CMS PAS HIG-14-003

La Combinaison

			2011 \sqrt{s} =	=7 TeV			no	A/	
$H \rightarrow \gamma \gamma$	_		ATLAS-CONF-2014-009 $2012 \sqrt{s} = 8 \text{ TeV}$						
$H \rightarrow ZZ^{(*)}$	4ℓ	_	$H \to \gamma \gamma \qquad - \qquad 14 \text{ categories: } \{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conver} \}$					20.3	
$H \to WW^{(*)}$	<i>ℓνℓν</i>		$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu2e, 4\mu, 2-je$	et VBF, <i>l</i> -tag	}	20.3	-
	$Z \rightarrow vv$	$E_{\mathrm{T}_{W}}^{\mathrm{mass}}$	$H \rightarrow WW^{(*)}$	lνlv	{ <i>ee</i> , <i>eµ</i> , <i>µe</i> , <i>µµ</i> } ⊗ {0-jet, 1	-jet, 2-jet VE	sF}	20.3	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{T}'' \in$		$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 20\}$	200 GeV} ⊗ {	2-jet, 3-jet}	20.3	
	$Z \to \ell \ell$	$p_{\mathrm{T}}^{z} \in$	$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\mathrm{T}}^{W} \in \{<90, 90\text{-}120, 120\text{-}160, 160\text{-}200\}$), ≥200 GeV}	} ⊗ {2-jet, 3-je	t} 20.3	
		-		$Z \to \ell \ell$	$p_{\rm T}^{\rm Z} \in \{<90, 90\text{-}120, 120\text{-}160, 160\text{-}200\}$), ≥200 GeV}	⊗ {2-jet, 3-je	t} 20.3	
				$\tau_{\rm lep} \tau_{\rm lep}$	$\{ee, e\mu, \mu\mu\} \otimes \{boosted\}$	l, 2-jet VBF}		20.3	
			$H \rightarrow \tau \tau$	$\tau_{\rm lep} \tau_{\rm had}$	$\{e, \mu\} \otimes \{\text{boosted}, 2\}$	-jet VBF}		20.3	
CMS PAS	HIG-13-	005	$\Pi \rightarrow \ell \ell$	$ au_{\mathrm{had}} au_{\mathrm{had}}$	{boosted, 2-jet	VBF}		20.3	_
Analyses						No. of	m _H	Lumi	(fb^{-1})
H decay	Prod. tag	Exclusi	ve final states	channels	resolution	7 TeV	8 TeV		
	untagged	γγ (4 d	4 diphoton classes)			4 + 4	1-2%	5.1	19.6
$\gamma\gamma$	VBF-tag	$\gamma\gamma + (jj)_{\text{VBF}}$ (two dijet classes for 8 TeV)					<1.5%	5.1	19.6
	VH-tag	$\gamma\gamma + (\epsilon$	e, μ, MET)			3	<1.5%		19.6
$ZZ\to 4\ell$	$N_{\rm jet} < 2$	4e, 4µ,	2e2µ			3+3	1-2%	5.1	19.6
	$\frac{N_{\text{jet}} \ge 2}{0.11}$	(DE or	CE dilantana) V	$(0 \circ n 1 \circ t \circ)$		3+3	209/	4.0	10 E
WIN SULL	VBE tog	(DF OF	+ $(jj)_{VBF}$ (DF or SF dileptons for 8 TeV)			4+4	20%	4.9	19.5
\mathbf{v}	WH-tag	2/31/0				1+2 2+2	2070	4.9	10.5
	0/1-iet	(et. 1	$\pi_{1} e_{1} u_{1} u_{2} \times (\log u_{1})$	w or high n^{2}		16 ± 16		1 .7	19.5
	1-iet	τ.τ.		in or inght p ₁	·)	1+1	15%	4.9	19.6
ττ	VBF-tag	(eτ _h , μ	ть, еи, ии, тьть)		5 + 5				
	ZH-tag	(ее, µµ	$(\tau_h \tau_h, e \tau_h, \mu)$	$\tau_h, e\mu$		8+8		5.0	10 5
	WH-tag	τ_{l} $\mu\mu$, τ_{h} $e\mu$, $e\tau_{h}$ τ_{h} , $\mu\tau_{h}$ τ_{h}						5.0	19.5
	VH-tag	(vv, ee,	, μμ, ev, μν with	₁2b-jets)×(low or high $p_{\rm T}({\rm V})$ or loose b-tag)	10 + 13	10%	5.0	12.1
bb	ttH-tag	(ℓ with	4, 5 or \geq 6 jets) >	\times (3 or \geq 4 b-	-tags);	6+6		5.0	5.1
$(\ell \text{ with 6 jets with 2 b-tags}); (\ell \ell \text{ with 2 or } \geq 3 \text{ b-tagged jets}) 3+3$						0.0	0.1		

Introduction

11

A Higgs Boson has been observed not by 1, but by 6000 physicists (and if you still do not believe me see next slides)...

Is this the missing piece of the SM, or is a tip of some huge iceberg?

We can try to answer this by measuring the properties of the newly discovered particle

The Higgs is the generator of the elementar VT S F Fermion masses. Its Yukawa coupling is proportional to mass.

The BEH mechanism allows the W and the Z to acquire mass without explicitly breaking the symmetry It dictates the couplings of the Higgs to the gauge Bosons, We would like to verify that.

What do we measure

We measure event yields We want to derive couplings and signal strengths

The first thing we want to measure is the the "signal strength" per channel

The analysis is using discriminators (usually reconstructed mass related) to increase S/B

 $n_{s}^{i} = \mu^{i} \times \sum_{p} (\sigma^{p} \times Br^{i})_{SM} \times A_{p}^{i} \times \varepsilon_{p}^{i} \times Lumi$ $p \in (ggF, VBF, VH, ttH) \quad i \in (\gamma\gamma, ZZ, WW, bb, \tau\tau)$ $\mu_{ZZ}(@m_{H} = 125.5) = 1.44^{+0.40}_{-0.35} \quad 6.6\sigma(4.4\sigma exp) \text{ ATLAS}$ $\mu_{ZZ}(@m_{H} = 125.6) = 0.93^{+0.26+0.13}_{-0.25} \quad 6.8\sigma(6.7\sigma exp) \quad CMS_{T}$

What do we measure

We measure event yields

We want to derive couplings and signal strengths

The first thing we want to measure is the the "signal strength" per channel

The analysis is using discriminators (usually reconstructed mass related) to increase S/B

 $n_{s}^{i} = \mu^{i} \times \sum_{p} (\sigma^{p} \times Br^{i})_{SM} \times A_{p}^{i} \times \varepsilon_{p}^{i} \times Lumi$ $p \in (ggF, VBF, VH, ttH) \quad i \in (\gamma\gamma, ZZ, WW, bb, \tau\tau)$

What do we measure

We increase sensitivity by classifying the events via categories and measure the signal strength per category and then combining them taking all the sytematic and statistical errors uncertainties into account

 $3.2\sigma(3.9\sigma \exp)$

The categories are also sensitive to different production modes, allowing the measurement of the couplings

 $n_{s}^{c,i} = \mu^{i} \times \sum_{p} (\sigma^{p} \times Br^{i})_{SM} \times A_{p}^{c,i} \times \varepsilon_{p}^{c,i} \times Lumi_{p}$ $p \in (ggF, VBF, VH, ttH) \quad i \in (\gamma\gamma, ZZ, WW, bb, \tau\tau)$ $\mu_{\gamma}(@m_{H} = 125.5) = 1.57^{+0.33}_{-0.28} \quad 7.4\sigma(4.3\sigma exp) \text{ ATLAS}$

$$\mu_{\gamma\gamma}$$
 (@m, = 125.7) = 0.77^{+0.29}
Higgs Couplings, Moriond 2014, Eilam Cross

Define Probe the Production Modes $\mu_{p}^{i} \equiv \begin{bmatrix} \mu_{p} \mu_{BR}^{i} \end{bmatrix} \quad \mu_{BR}^{i} \equiv \frac{BR^{i}}{BR_{SM}^{i}}$ Parameterize with explicit

production modes and decays

 $n_{s}^{c,i} = \sum_{p} \left[\mu^{p} \mu_{BR}^{i} \right] \times (\sigma^{p} \times Br^{i})_{SM} \times A_{p}^{c,i} \times \varepsilon_{p}^{c,i} \times Lumi$

Note: ONE CAN ONLY FIT THE Note: ONE CAN ONLY FIT THE PRODUCT $[\mu_p \mu_{BR}^f]$ We cannot fit simultaneously the cross section and the BR \rightarrow No full Higgs width fit is possible to high accuracy at the LHC (from the signal rates) The categories allow us to fit specific production modes but no combination is possible unless we make assumptions on the BR

Probing VBF production mode

We fitted $\boldsymbol{\mu}_{VBF+VH}^{i} \equiv \left[\boldsymbol{\mu}_{VBF+VH} \times \boldsymbol{\mu}_{BR}^{i} \right]$ $\boldsymbol{\mu}_{ggF+ttH}^{i} \equiv \begin{bmatrix} \boldsymbol{\mu}_{ggF+ttH} \times \boldsymbol{\mu}_{BR}^{i} \end{bmatrix} \quad \boldsymbol{\mu}_{ggF+ttH}^{f} = \boldsymbol{\mu}_{ggF}^{f} = \boldsymbol{\mu}_{ttH}^{f} \quad \sim g_{ttH}^{2}$

Here we assume

$$\mu_{VBF+VH}^{f} = \mu_{VBF}^{f} = \mu_{VH}^{f} \sim g_{VVH}^{2}$$
$$\mu_{VBF+VH}^{f} = \mu_{VBF}^{f} = \mu_{VH}^{f} \sim g_{VVH}^{2}$$

Taking one decay mode at a time we can go one step further and fit the ratio per channel

$$\frac{\mu_{VBF+VH}^{i}}{\mu_{ggF+ttH}^{i}} = \frac{\mu_{VBF+VH}}{\mu_{ggF+ttH}}$$

This ratio is INDEPENDENT of the decay channel so we can combine

	$rac{\mu_{VBF+VH}}{\mu_{ggF+ttH}}$	Significance
ATLAS	$1.4^{+0.7}_{-0.5}$	
CMS	$1.54^{+1.16}_{-0.74}$	3.2σ

CMS: https://twiki.cern.ch/twiki/bin/view/ CMSPublic/ Hig13005TWiki#Ratio of production modes not in

Probing VBF production mode

We fitted $\mu_{VBF+VH}^{i} \equiv \left[\mu_{VBF+VH} \times \mu_{BR}^{i}\right]$ $\mu_{ggF+ttH}^{i} \equiv \left[\mu_{ggF+ttH} \times \mu_{BR}^{i}\right]$

Taking one decay mode at a time we can go one step further and fit the ratio per channel

 μ_{VBF+VH}^{\prime} _ μ_{VBF+VH}

$$\mu_{ggF+ttH}^{i} \qquad \mu_{ggF+ttH}$$
This ratio is INDEPENDENT
of the decay channel so we
can combine

Indirect Sensitivity to Fermion Couplings

Note that if all fermion couplings are set to be equal, $k_g^2 = k_F^2$ $k_\gamma^2 = |1.28k_W - 0.28k_t|^2$

Higgs Couplings, Moriond 2014, Eilam Gross

Direct observation of $H \rightarrow bb$ and $H \rightarrow \tau \tau$

The Bosonic channels (**yy**,ZZ,WW) provide indirect evidence about the fermion couplings to Higgs via loops

But the direct evidence came with the observation of the bb and the $\tau\tau$ by (first) CMS and (then) ATLAS H->bb dominates the Higgs total width (BR~58%)

ggF,H→bb is saturated with overwhelming direct production of bb from QCD background

The handle is given by a Vector Boson produced in association with the $H \rightarrow bb$ in the VH, $H \rightarrow bb$ process.

With a SM BR of over 6% and a relatively clean signal in VBF and Boosted categories, $H \rightarrow \tau \tau$ is even more important then the bb (with the current luminosity and analysis status) in order to establish the Higgs direct coupling to fermions.

Fermions Direct: $H \rightarrow \tau \tau$

Discriminator is not necessarily mass (CMS)

Here it's a BDT score (ATLAS) (see talks in YSF by Niels Ruthmann & Riccardo Manzoni)

Η→ττ	CMS	ATLAS
Signal Strength	μ=0.78±0.27	$\mu = 1.4^{+0.5}_{-0.4}$
Excess	3.2σ (exp 3.7σ)	4.1σ (exp 3.2σ)
	arXiv:14018850411v1s,11ep+ex014,1	Eilam GrophTLAS-CONF-2013-108

Fermions Direct: $H \rightarrow bb$

Direct Evidence for $H \rightarrow$ Fermions Combining bb and $\tau\tau$

Direct Evidence for $H \rightarrow$ Fermions Combining bb and $\tau\tau$

ATLAS and CMS each sees a strong evidence for Higgs coupling to fermions with a strength consistent with the SM expectation

When combined the significance of the observation goes beyond $5\sigma \rightarrow$ ATLAS+CMS discovered H $\rightarrow \tau \tau$

Comment: Fermions Direct: ttH

Probing the Higgs Yukawa coupling to top is of an ultimate importance. $m_{top}/v~1$. Higgs won't decay to tt, but one can probe directly the ttH coupling by the Higgsstrahlung of Higgs off top or tt fusion to Higgs. The Higgs then decays to bb or multileptons (from ZZ,WW or $\tau\tau$) with extremely small $\sigma \times BR$.

ttH, H→bb

The final state is extremely difficult for it contains 4 b-quarks and suffers from an extremely difficult to control tt+HF BG. (see talks on ttH by Cristina Botta and Eve Le Menedeu)

Measuring Higgs Couplings

$$\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W_\mu^+ W^{-\mu} H + \kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\mu\nu} H + \kappa_{\gamma} \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_Z \gamma \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H + \kappa_{VV} \frac{\alpha}{2\pi v} \left(\cos^2 \theta_W Z_{\mu\nu} Z^{\mu\nu} + 2 W_{\mu\nu}^+ W^{-\mu\nu} \right) H - \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_{\tau} \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) H.$$

Define the normalized coupling constants (w.r.t. the SM couplings)

$$k_i^2 = \frac{\Gamma_i}{\Gamma_I^{SM}} \quad k_H^2 = \frac{\sum k_j^2 \Gamma_j^{SM}}{\Gamma_H^{SM}}$$

Higgs Couplings, Moriond 2014, Eilam Gross

Measuring Higgs Couplings

 $n_{s}^{c,i} = \sum_{p} \left[\mu^{p} \mu_{BR}^{i} \right] \times (\sigma^{p} \times Br^{i})_{SM} \times A_{p}^{c,i} \times \varepsilon_{p}^{c,i} \times Lumi$

Can we resolve the degeneracy, disentangle $\mu^{p}\mu^{WW}_{BR}$

The degeneracy can be broken by parameterize the strength parameters with couplings and introduce constraints which reduce the number of p.o.i. and allow reasonable fits.

$$k_i^2 = \frac{\Gamma_i}{\Gamma_I^{SM}} \quad k_H^2 = \frac{\sum k_j^2 \Gamma_j^{SM}}{\Gamma_H^{SM}}$$

Higgs Couplings, Moriond 2014, Eilam Gross-

The simplest non-trivial model is $(k_{F_{,}} k_{V})$ where all Fermion couplings are set to k_{F} and all Boson couplings to k_{V}

$$\frac{\sigma_{_{VBF}}^{WW}}{\sigma_{_{VBF}}^{WW}(SM)} = \frac{k_v^2 \cdot k_v^2}{0.75k_F^2 + 0.25k_v^2}$$

Disentangling The Couplings

Summary of Signal Strength ATLAS-CONF-2014-009

 $\sqrt{s} = 8 \text{ TeV} \int Ldt = 20.3 \text{ fb}^{-1}$

A comment on Interference

Allowing negative k_t is extremely important Can be probed with tH

Coupling Benchmarks

To make reasonable fits we introduce physics motivated scenarios. Testing the compatibility of the discovered Higgs with the SM is to test also where is it NOT compatible, spotting where NP might sneak in.

NP can appear in either the Higgs width and/or in the loops.

$$k_{H}^{2} = \frac{\sum_{j=Z,W,t,b,\tau} k_{j}^{2} \Gamma_{j}^{SM} + k_{\gamma}^{2} \Gamma_{\gamma}^{SM} + k_{g}^{2} \Gamma_{g}^{SM}}{\Gamma_{H}^{SM}} \qquad \Gamma_{H} = k_{H}^{2} \Gamma_{H}^{SM} + BR_{i,u} \Gamma_{H}$$

Γ_{H}	k_{γ}	k _g	Scenario	Comments
$\Gamma_H = k_H^2 \Gamma_H^{SM}$	$K_{\gamma}(k_t,k_W)$	$K_g(k_t,k_b)$	SM	only SM particles in loops
$\Gamma_H = k_H^2 \Gamma_H^{SM} + BR_{i,u} \Gamma_H$	k_{γ}	k_{g}	NP <	m_{NP} could be $<\frac{m_{H}}{2}$
$\Gamma_H = k_H^2 \Gamma_H^{SM}$	k_{γ}	k_{g}	NP >	$m_{NP} > \frac{m_H}{2}$
$\Gamma_H = k_H^2 \Gamma_H^{SM} + BR_{i,u} \Gamma_H$	$K_{\gamma}(k_t,k_W)$	$K_g(k_t,k_b)$	NP_{NL}	NP (not in the loops) neither charged nor coloured

Probing Custodial Symmetry

ATLAS

(NP_{NL})

CMS

Overall

λ_{f7}, k₇₇

profiled

Overall k₇,K_f

 λ_{WZ} is expected to be protected and consistent with unity Large deviations from 1 indicate new physics.

The Full Monty I: SM

bb makes 58% of the Higgs width, bb rate measured low, pulls all couplings down

Vector and Fermion Couplings

The $\gamma\gamma$ loop induces some sensitivity to the relative sign between k₊ and k_w

The high observed $H \rightarrow ZZ$ pulls k_W up, allowing high $\gamma\gamma$ rate and keeps k_{+} positive $k_w^2 = |1.28k_W - 0.28k_w|^2$

			v
	fitted	comments	
ATLAS	k_{V}	$\Gamma_{i,u}=0$	1.15 ± 0.08
(SM)	k_F	$k_{H}^{2}(k_{j})$	$0.99^{+0.17}_{-0.15}$
CMS	k_{V}	$\Gamma_{i,u} = 0$	[0.81,0.97]
(SM)	k_F	$k_{H}^{2}(k_{j})$	[0.71,1.11]
ATLAS	2	k _{vv}	0.86+0.14
(NP_{NL})	\mathcal{M}_{FV}	profiled	$0.00_{-0.12}$

ATLAS: 2D compatibility with SM 10% Couplings, Moriond 2014, Eilam Gross

Vector and Fermion Couplings

This plot tells a story:

ATLAS-CONF-2014-009

Vector and Fermion Couplings

This plot tells a story:

Higgs Couplings, Moriond 2014, Eilam Gross

Minimal Composite Higgs Model

ggs Couplings, Moriond 2014, Ellam Gross

Probing the Fermion Couplings Asymmetry

In models BSM (e.g. 2HDM) there is an asymmetry between k_u and k_d (u=c,t; d=b, τ) or k_d (u=c,t; d=b, τ) or k_d and kq

The direct measurement of the Higgs couplings to b and τ together with the direct (ttH) and loops induced coupling to top allows to measure λ_{du}

Measurement of the coupling to τ allows a measurement of λ_{Qq}

The future will bring the Muons and the ttH into the game and improve the measurement

ATLAS-CONF-2014-009

2

Asymmetries in Fermion Sector

CMS are using a SM-like model while ATLAS are using an $\ensuremath{\mathsf{NP}_{\mathsf{NL}}}$ model

	fitted	68% positibe C.I.	p.o.i
ATLAS	$\lambda_{_{du}}$	[0.78,1.15]	$\lambda_{du}, \lambda_{Vu}, k_{uu}$
$(SM_{\scriptscriptstyle NL})$	$\lambda_{_{\ell q}}$	[0.99,1.5]	$\lambda_{\ell q}, \lambda_{Vq}, k_{qq}$
CMS	$\lambda_{_{du}}$	[1,1.6]	λ_{du}, k_V, k_u
(SM)	$\lambda_{_{\ell q}}$	[0.89,1.62]	$\lambda_{\ell q}, k_V, k_q$

Probing the Beyond $(kg,k\gamma)$

Scenario	$k_H(k_j)$	$k_{\gamma}(k_t,k_W)$	$k_g(k_t,k_b)$	k_{F}	k_{V}	p.o.i		
(k_g, k_γ) (NP>)	\checkmark	×	×	=1	=1	k_g, k_γ	A,C	

Probing the Beyond $(kg, k\gamma, Br_{i,u})$

The Full Monty II (The Mother of All Models)

Generic Model II (ATLAS)

Release constrain in SM width

to allow BSM contributions.

Replace loop induced couplings by effective couplings, $k_{\rm g},k_{\gamma}$

All couplings are fitted independently

p.o.i
$$\lambda_{WZ}, \lambda_{tg}, \lambda_{bZ}, \lambda_{\tau Z}, \lambda_{gZ}, \lambda_{\gamma Z}, \kappa_{gZ}$$

No sensitivity to relative signPoor sensitivity to top coupling

-The 7D compatibility with SM is 21%

The Full Monty III (C6)

 $\sqrt{s} = 7 \text{ TeV}, L \le 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L \le 19.6 \text{ fb}^{-1}$ Generic Model III (C6) CMS Preliminal PAS HIG-1 2085% CL (CMS) 95% CL Replace loop induced κ_{V} couplings by effective couplings, k_a, k_{γ} κ_b All couplings are fitted independently κ_τ The width is not allowed to have BSM ĸ contributions (NP>) κ_q p.o.i: $k_V, k_h, k_\tau, k_t, k_g, k_\gamma$ κ р_{sм} = 0.78 BR_{BSM} Generic Model III (CMS) $[\kappa_V \le 1] p_{SM} = 0.88$ The C6 model, same as 1.5 2 2.5 3 3.5 4 4.5 5 0.5 generic model II, but parameter value constrain $k_w = k_z$

Some (still) Rare Decay Channels

Conclusions I

Conclusions II

Conclusions III

In two years the "discovery of a scalar particle compatible with a SM Higgs Boson" made a phase transition into "precsion measurements"

The Higgs moved from the "search" regime to the "SM" regime

The more luminosity collected (so far) it does not reveal a new face, it is remarkably compatible with a SM Higgs

The Higgs revolution has just begun and we look forward to better measurements and new searches that will reveal hopefully either new particles or significant deviations from the SM. But life is becoming more demanding.....

We thank the LHC machine team that enabled us to experience a once in a physicist's lifetime experience!

BACKUP

Discovery Channel H->WW

H->WW->lvlv

A challenging channel; No mass reconstruction (mT,mll) Dominant BG WW and tt Understanding Etmiss tails crucic BG from DATA control regions Analysis in categories: (0,1,2 jets VBF,VH)X(SF,DF)

Most important systematics from signal cross section (QCD scale, PS and UE, total >10%) $\mu^{WW} = 0.99^{+0.31}_{-0.28}$ 3.8 σ (3.8 σ exp) @ m_H=125 GeV ATLAS $\mu^{WW} = 0.72^{+0.20}_{-0.18}$ 4.3 σ (5.8 σ exp) @m_H=125.6 GeV CMS CMS: J. High Energy Phys. 01 (2014)

Scenario	$k_H(k_j)$	$k_{\gamma}(k_t,k_W)$	$k_g(k_t,k_b)$	k_F	k_{V}	p.o.i	
Custodial (NP _{NL})	_	\checkmark	\checkmark	\checkmark	×	$\lambda_{\scriptscriptstyle W\!Z}$. $\lambda_{\scriptscriptstyle F\!Z}$, $k_{\scriptscriptstyle Z\!Z}$	А
Custodial (SM)	\checkmark	\checkmark	\checkmark	\checkmark	×	$\lambda_{\scriptscriptstyle W\!Z}, k_{\scriptscriptstyle Z}, k_{\scriptscriptstyle F}$	С
(k_F,k_V) (SM)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$k_F^{},k_V^{}$	A,C
(k_F,k_V) (NP _{NL})	_	\checkmark	\checkmark	\checkmark	\checkmark	$\lambda_{_{FV}}$, $k_{_{VV}}$	A
Generic I (SM)			\checkmark	×	×	$k_W, k_Z, k_t, k_b, k_{\tau}$	A
Generic II (NP)	_	×	×	×	×	$\lambda_{_{WZ}},\lambda_{_{bZ}},\lambda_{_{\gamma Z}},\lambda_{_{gZ}},\lambda_{_{ au Z}},\lambda_{_{ au g}}$	
<i>u</i> / <i>d</i> (SM)	\checkmark	\checkmark	\checkmark	k_u, k_d	\checkmark	λ_{du}, k_V, k_u	С
ℓ / q (SM)	\checkmark	\checkmark	\checkmark	k_ℓ, k_q	\checkmark	$\lambda_{\ell q},\!k_{_V},\!k_{_q}$	
u/d (NP _{NL})	_	\checkmark	\checkmark	k_u, k_d	\checkmark	$\lambda_{_{du}},\lambda_{_{Vu}},k_{_{uu}}$	A
$\ell / q (NP_{NL})$	_	\checkmark	\checkmark	k_ℓ , k_q	\checkmark	$\lambda_{\ell q}, \lambda_{Vq}, k_{qq}$	
(k_g, k_γ) (NP>)	\checkmark	×	×	=1	=1	$k_g^{},k_\gamma^{}$	A,C
(k_g,k_γ) (NP<)	$\sqrt{*}$	×	×	=1	=1	$k_{g}, k_{\gamma}, BR_{i,u}(*)$	A,C
C6 (NP>)	\checkmark	×	×	—	\checkmark	$k_{\gamma}, k_g, k_V, k_t, k_b, k_{\tau}$	С

Measuring Higgs Couplings

 $n_{s}^{c,i} = \sum_{p} \left[\mu^{p} \mu_{BR}^{i} \right] \times (\sigma^{p} \times Br^{i})_{SM} \times A_{p}^{c,i} \times \varepsilon_{p}^{c,i} \times Lumi$

The degeneracy of $\left[\mu^{p} \mu^{i}_{BR} \right]$ can be broken by parameterize the strength parameters with couplings and introduce constraints which reduce the number of p.o.i. and allow reasonable fits.

$$k_i^2 = \frac{\Gamma_i}{\Gamma_I^{SM}} \quad k_H^2 = \frac{\sum k_j^2 \Gamma_j^{SM}}{\Gamma_H^{SM}}$$

Examples: @ m_H=125.5 GeV

$$\begin{split} \kappa_{\gamma}^{2} &\sim 1.59 \cdot \kappa_{W}^{2} - 0.66 \cdot \kappa_{W} \kappa_{t} + 0.07 \cdot \kappa_{t}^{2} \qquad (\text{t,W}) \text{ interference} \\ \kappa_{g}^{2} &\sim 1.06 \cdot \kappa_{t}^{2} - 0.07 \cdot \kappa_{t} \kappa_{b} + 0.01 \cdot \kappa_{b}^{2} \qquad (\text{t,b}) \text{ interference} \\ \kappa_{VBF}^{2} &\sim 0.74 \cdot \kappa_{W}^{2} + 0.26 \cdot \kappa_{Z}^{2} \\ \kappa_{H}^{2} &\sim 0.57 \cdot \kappa_{b}^{2} + 0.22 \cdot \kappa_{W}^{2} + 0.09 \cdot \kappa_{g}^{2} + 0.06 \cdot \kappa_{\tau}^{2} + 0.03 \cdot \kappa_{Z}^{2} + 0.03 \cdot \kappa_{c}^{2} \end{split}$$