

Observation of electroweak Z+2j production at ATLAS

[a.k.a Z-boson production via weak boson fusion]

Andrew Pilkington – University College London Presented at the 49th Rencontres de Moriond: EW interactions and unified theories

Outline

- 1) Cross sections and distributions for inclusive Z+2j production
- 2) Extracting the electroweak Z+2j component

Why bother with electroweak Z+2j production?

- Weak-boson fusion/scattering plays an important role in Higgs measurements (couplings, ττ) and searches for anomalous quartic gauge couplings.
- Z-production via weak boson fusion is a *standard candle* for these processes
 - first observation of weak boson fusion at a hadron collider
 - a direct test of the ZWW coupling.

Z+2j production at the LHC

- Electroweak Z+2j production is *rare*: only ~1% of the inclusive Z+2j cross section
- Electroweak Z+2j has two characteristic features:
 - Dijet system covering a large rapidity interval and large invariant mass
 - Little additional jet activity in the rapidity interval

Z+2j production at the LHC

Cross sections and distributions for inclusive Z+2j production

Detector-corrected measurements

- 1) Cross sections measured in five fiducial regions
- 2) Differential distributions sensitive to dijet kinematics (m_{ii} , Δy)
- 3) Differential distributions sensitive to 'in-gap' jet activity

Five fiducial regions: different sensitivity to electroweak Zjj

Object	baseline	high-mass	search	control	$high$ -p $_{ m T}$
Leptons	$ \eta^{\ell} < 2.47, p_{\mathrm{T}}^{\ell} > 25 \mathrm{GeV}$				
Dilepton pair	$81 \le m_{\ell\ell} \le 101 \text{ GeV}$				
	— $p_{\rm T}^{\ell\ell} > 20~{\rm GeV}$				
Jets	$ y^j < 4.4, \ \Delta R_{j,\ell} \ge 0.3$				
	$p_{\mathrm{T}}^{j1} > 55 \mathrm{GeV}$				$p_{\rm T}^{j1}>85~{\rm GeV}$
	$p_{\rm T}^{j2} > 45 { m ~GeV}$				$p_{\rm T}^{j2}>75~{\rm GeV}$
Dijet system		$m_{jj} > 1 { m ~TeV}$	$m_{jj} > 250 \text{ GeV}$		
Interval jets	_		$N_{ m jet}=0$	$N_{\rm jet} \ge 1$	—
Zjj system			$p_{\mathrm{T}}^{\mathrm{balance}} < 0.15$	$p_{\rm T}^{\rm balance,3} < 0.15$	_

- --- Z-boson selection
- --- Baseline jet selection
- --- Probe of high- p_{T} or high-mass --- Search/control cuts for electroweak extraction

Example of data/simulation in the baseline region

- Small non-Z backgrounds (approx. 2% of total event yield)
- Reasonable agreement between data and simulation

Measure cross section by $\sigma_{\rm fid} = \frac{N_{\rm obs} - N_{\rm bkg}}{\int L \, {\rm d}t \, \cdot \, \mathcal{C}}$

Measurement of dijet kinematics (unfolded)

Powheg accurate to next-to-leading order (NLO) in QCD for Z+2j production Sherpa accurate only to leading order (LO) in QCD for Z+2j production

Measurement of in-gap jet activity (unfolded)

Sherpa accurate to LO in QCD for third and fourth jet emission Powheg only accurate to LO in QCD for third jet emission

Extracting the electroweak Z+2j component

Extracting the signal - methodology

- Electroweak component is extracted by a two template fit to the dijet invariant mass
- This fit is carried out in the search region, which has a veto on additional central jet activity

Data-driven constraint for the background model (I)

- Control region defined by <u>reversing</u> the jet veto.
- Basic idea: correct the simulation in the *search* region using the data/MC ratio in the *control* region.
 - Plot shows correction derived for SHERPA
- Added bonus: limits the impact of jet energy scale uncertainties
- Downside: remaining experimental and theoretical uncertainties associated with the extrapolation from *control -> search*

Data-driven constraint for the background model (II)

- Choice of generator checked by using POWHEG (instead of SHERPA) and repeating full analysis chain.
 - Extracted signal yields agree to 0.8%
 - Choice of control region validated by splitting it into seven sub-regions,
 - deriving new constraints,
 - repeating full analysis chain.
 - extracted signal yields agree to within 5%.

Extracting the signal - results

	-	
		Electron+muon
ts	Data	32186
sul	MC predicted $N_{\rm bkg}$	$32600 \pm 2600 {}^{+3400}_{-4000}$
t re	MC predicted $N_{\rm EW}$	$1333\pm50\pm40$
ï	Fitted $N_{\rm bkg}$	$30530 \pm 216 \pm 40$
	Fitted $N_{\rm EW}$	$1657 \pm 134 \pm 40$

Background-only hypothesis rejected at greater than 5σ significance

- N_{obs} / 250 GeV ATLAS 10⁴ ∫ L dt = 20.3 fb⁻¹ √s = 8 TeV search region 10³ 10² 10 Data (2012) Background Background + EW Zjj BKG + EW 1.5 Data 0.5 BKG Data 0.5 constrained unconstrained 0 3000 35 m_{ii} [GeV] 2500 1000 1500 2000 3500 500
- Extracted yield converted to a cross section in the *search* fiducial region:

$$\sigma_{\rm EW} = 54.7 \pm 4.6 \,({\rm stat}) \,{}^{+9.8}_{-10.4} \,({\rm syst}) \,\pm 1.5 \,({\rm lumi}) \,{\rm fb}.$$

15

Breakdown of the electroweak cross section systematics

Source	$\Delta N_{ m EW}$		$\Delta \mathcal{C}_{\mathrm{EW}}$	
	Electrons	Muons	Electrons	Muons
Lepton systematics			$\pm 3.2~\%$	$\pm 2.5\%$
Control region statistics	$\pm 8.9~\%$	$\pm 11.2~\%$		
JES	$\pm 5.$	6 %	+2.7 -3.4	%
JER	± 0.4	4 %	±0.8	8 %
Pileup jet modelling	± 0.3	3 %	± 0.3	8 %
JVF	±1.1	1 %	+0.4 -1.0	%
Signal modelling	± 8.9	9 %	+0.6 -1.0	%
Background modelling	$\pm 7.5~\%$			
Signal/background interference	$\pm 6.2~\%$		_	
PDF	$^{+1.5}_{-3.9}$ %		$\pm 0.1~\%$	

Summary

- Inclusive Zjj production measured using ATLAS data
 - Cross sections in five fiducial regions
 - Differential distributions fully corrected for detector effects
- Observation of electroweak Zjj production at ATLAS
 - <u>A benchmark process for future studies of weak-boson fusion at the LHC</u>
 - Background-only hypothesis rejected at greater than 5σ
 - Cross section measured in two fiducial regions. Excellent agreement with NLO.
 - First limits placed on anomalous triple gauge couplings using weak boson fusion.
- For further information: arXiv:1401.7610

Backup

Process composition in each fiducial region

	Composition (%)				
Process	baseline	$high$ - p_{T}	search	control	high-mass
Strong Zjj	95.8	94.0	94.7	96.0	85
Electroweak Zjj	1.1	2.1	4.0	1.4	12
WZ and ZZ	1.0	1.3	0.7	1.4	1
$t\bar{t}$	1.8	2.2	0.6	1.0	2
Single top	0.1	0.1	< 0.1	< 0.1	< 0.1
Multijet	0.1	0.2	< 0.1	0.2	< 0.1
WW, W+jets	< 0.1	< 0.1	< 0.1	< 1.1	< 0.1

- Small non-Z background contributions (~2%)
- Cross section determined by $\sigma_{\rm fid} = \frac{N_{\rm obs} N_{\rm bkg}}{\int L \, {\rm d}t \, \cdot \, \mathcal{C}}$, where L is the luminosity and C corrects for detector effects.

Cross section measurement and aTGC limits

• Measured cross section:

$$\sigma_{\rm EW} = 54.7 \pm 4.6 \,(\text{stat}) \,{}^{+9.8}_{-10.4} \,(\text{syst}) \,\pm 1.5 \,(\text{lumi}) \,\text{fb}.$$

• Theory prediction:

$$\sigma_{\rm EW} = 46.1 \pm 0.2 \, (\rm stat) \stackrel{+0.3}{_{-0.2}} (\rm scale) \pm 0.8 \, (\rm PDF) \pm 0.5 \, (\rm model) \, \, fb$$

• Limits on anomalous triple gauge couplings:

aTGC	$\Lambda = 6 \text{ TeV (obs)}$	$\Lambda = 6 \text{ TeV} (\exp)$	$\Lambda = \infty \text{ (obs)}$	$\Lambda = \infty \; (\exp)$
$\Delta g_{1,Z}$	[-0.65, 0.33]	[-0.58, 0.27]	[-0.50, 0.26]	[-0.45, 0.22]
λ_Z	[-0.22, 0.19]	[-0.19, 0.16]	[-0.15, 0.13]	[-0.14, 0.11]

$$\frac{\mathcal{L}}{g_{WWZ}} = i \left[g_{1,Z} \left(W^{\dagger}_{\mu\nu} W^{\mu} Z^{\nu} - W_{\mu\nu} W^{\dagger\mu} Z^{\nu} \right) + \kappa_Z W^{\dagger}_{\mu} W_{\nu} Z^{\mu\nu} + \frac{\lambda_Z}{m_W^2} W^{\dagger}_{\rho\mu} W^{\mu}_{\nu} Z^{\nu\rho} \right]$$

Why bother with weak boson fusion?

- In the LHC Run-II, weak boson fusion is due to play a major part in tests of the electroweak sector of the Standard Model:
 - Higgs production via weak boson fusion and HWW coupling determination
 - Weak boson scattering measurements and searches for anomalous gauge couplings

Validation of control region constraint

- Choice of control region was validated by splitting it into seven sub-regions
 - All these regions are signal suppressed
- Can use orthogonal sub-regions to see if the reweighting function derived on one region improves the agreement between simulation and data in another region
- Agreement improved in all cases,
- Example, shown here is for orthogonal subregions that differ in the third jet transverse momentum.

