

Z Boson Asymmetry Measurements at the Tevatron

Breese Quinn University of Mississippi On behalf of the CDF and DØ Collaborations

XLIXth Rencontres de Moriond EW March 19, 2014

Drell-Yan lepton pairs are produced at the Tevatron through

$$p\overline{p}
ightarrow Z/\gamma^*
ightarrow l^+l^-$$

The weak mixing angle can be measured from the forwardbackward asymmetry of the polar angle distribution of these Drell-Yan pairs

$$\frac{q\overline{q} \to \gamma^* \to l^+ l^-}{g_V^f = Q_f} \quad \text{Born level} \quad \frac{q\overline{q} \to Z \to l^+ l^-}{g_V^f = I_3 - 2Q_f \sin^2 \theta_W}$$
$$g_A^f = 0 \quad \langle \overline{f} | (g_V + g_A \gamma^5) \gamma^\mu | f \rangle \quad g_A^f = I_3$$

- $\bullet I_3$, $sin^2 \theta_W$ couplings altered by weak radiative corrections
 - Multiplicative factor of a few %
 - + Gives effective $sin^2\theta_W$ coupling $\rightarrow sin^2\theta_{eff}^l$

B. Quinn University of Mississippi

Introduction: Theory

 Measure *l*·*l*⁺ angular distribution in the Collins-Soper rest frame of the boson. Polar angle, θ*, of the *l*⁻ is defined relative to the direction of the incoming quark

• Forward: $cos\theta^* > 0$, Backward: $cos\theta^* < 0$

dN/dΩ ∝ 1 + $cos^2 θ^* + A_4 cos θ^*$ All coefficients[†] but A_4 vanish as $P_T → 0$ *A*₄ cos θ^{*}: parity violating, from

 $A_{FB} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{3}{8}A_4$

A₄cosθ*: parity violating, from interference of vector and axial vector currents

◆ Sensitive to $sin^2 \theta_W$ through Z self-interference: $(1 - 4|Q_l|sin^2 \theta_W)(1 - 4|Q_q|sin^2 \theta_W)$

[†]@ NLO QCD: $dN/d\Omega = 1 + \cos^2\theta^* + A_0(1 - 3\cos^2\theta^*)/2 + A_1\sin^2\theta^*\cos\phi + A_2(\sin^2\theta^*\cos^2\phi)/2 + A_3\sin\theta^*\cos\phi + A_4\cos\theta^* + A_5\sin^2\theta^*\sin^2\phi + A_6\sin^2\theta^*\sin\phi + A_7\sin\theta^*\sin\phi$

B. Quinn University of Mississippi

- Measure A_{FB} in bins of lepton pair invariant mass
- Produce Monte Carlo $A_{FB}(M, sin^2\theta_W)$ templates
- Perform full corrections to data and simulation
 - Background subtractions

• Extract $sin^2 \theta_W$ by a χ^2 comparison between data and MC

B. Quinn	
University	of Mississippi

Indirect measurement of $sin^2 \theta_W$ (or M_W) using $\mu^+ \mu^$ pairs from γ^*/Z bosons produced in pp collisions at a center-of-momentum energy of 1.96 TeV

CDF Collaboration Accepted PRD, arXiv:1402.2239

Event Selection

- ← Full CDF RunII dataset: 9.2 fb⁻¹
- Tight muon cuts: $P_T > 20 \text{ GeV}$
- Dimuon rapidity region: |y| < 1
- All dimuon detector topologies
- ← Mass distribution: M > 50 GeV
- Very low backgrounds
 - EWK: 0.53% (simulation)
 - ✤ QCD: 0.10% (data)
- 276,623 events after BG subtraction
- Momentum Calibration
 - Rochester Method: tune data and simulation to post-FSR generator level in 64 individually calibrated (η, φ) bins
- ♦ MC: PYTHIA, CTEQ5L

- Traditional measurement with acceptance and efficiency corrections: $A_{FB} = \frac{N^{+}/(\epsilon A)^{+} - N^{-}/(\epsilon A)^{-}}{N^{+}/(\epsilon A)^{+} + N^{-}/(\epsilon A)^{-}}$
 - Requires measuring 22 numbers for the 11 dimuon topologies
- Use simpler event weighting method: Eur.Phys.J. C (2010) 67:321
- Equivalent to measuring A_{FB} in $cos\theta^*$ bins
 - Assumes $(\epsilon A)^+ = (\epsilon A)^-$ in each bin; NLO QCD angular dist. (slide 3)
 - $A_{FB}(|\cos\theta^*|) = A_{FB} \cdot |\cos\theta^*| / (1 + \cos^2\theta^* + \cdots)$
 - Measurements for large $cos\theta^*$ bins are more accurate
- Recast binned measurements into unbinned weighted event sum:

 - Event weights for the numerator and denominator terms remove angular dependence and account for measurement accuracy at each cosθ*
 - + Equivalent to maximum likelihood fit, expect 20% smaller uncertainty
- Does not account for
 - Smearing due to detector resolution
 - + 2nd order bias due to regions of low acceptance and $(\epsilon A)^+ ≠ (\epsilon A)^-$
- B. Quinn University of Mississippi

Unfolding / Other Corrections

- Raw A_{FB} distribution must be unfolded due to resolution smearing and QED final state radiation effects
 - Two 16 x 16 unfolding matrices (16 mass bins, + and regions)
 - Used to produce covariance and error matrices
- Bin-by-bin 2nd order bias corrections
 - + Due to limited rapidity coverage $(A_{FB}(|y|))$ and detector non-uniformity

B. Quinn University of Mississippi

- The A_{FB} measurement is compared to A_{FB} templates calculated at different $sin^2\theta_W$ values
- Three sets of templates are used, with different Enhanced Born Approximation (EBA) calculations

Template	$\sin^2 \theta_{\rm eff}^{\rm lept}$	$\sin^2 \theta_W$	$\bar{\chi}^2$
resbos NLO	0.2315 ± 0.0009	0.2233 ± 0.0008	21.1
POWHEG-BOX NLO	0.2314 ± 0.0009	0.2231 ± 0.0008	21.4
Tree LO	0.2316 ± 0.0008	0.2234 ± 0.0008	24.2

CDF $\mu\mu$ 9 fb⁻¹ 40 A_{fb}(M) Measurement **RESBOS NLO EBA template scan** 35 **ResBos is chosen as the default** A_{FB} template ~× 30 25 20 0.222 0.223 0.224 0.225 0.226 0.227 0.22 0 221 sin²θ_w B. Ouinn Moriond EW 2014 University of Mississippi March 19, 2014

Systematic Uncertainties

Source	$\sin^2 \theta_{\rm eff}^{\rm lept}$
Momentum scale	± 0.00005
Backgrounds	± 0.00010
QCD scales	± 0.00003
CT10 PDFs	± 0.00037
EBA	± 0.00012

- ← Global scale data-MC shifts
- ← Variations of 0.5 and 2.0 of default
- ← Quadrature sum of eigenvectors, scaled to 68% CL
- ← ResBos/Powheg-Box/Tree , and QCD rad on/off difference

$$sin^2 \theta_{eff}^l = 0.2315 \pm 0.0009 \pm 0.0004$$

In Standard Model context, with on-shell renormalization scheme $(sin^2\theta_W = 1 - M_W^2/M_Z^2)$

 $sin^2 \theta_W = 0.2233 \pm 0.0008 \pm 0.0004$

 $M_W(indirect) = 80.365 \pm 0.043 \pm 0.019 \text{ GeV/c}^2$

B. Quinn	
University	of Mississippi

Measurement of the effective weak-mixing angle $(sin^2 \theta_{eff}^l)$ in $p\overline{p} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ events at $\sqrt{s} = 1.96$ TeV

D0 Collaboration D0 Note 6426-CONF

Event Selection

- ← Full D0 RunII dataset: 9.7 fb⁻¹
- Two high- P_T electrons: $P_T > 25$ GeV
 - Central and endcap calorimeters (CC,EC)
- Tight track requirements
- ← Mass distribution: M > 50 GeV
 - $sin^2 \theta_{eff}^l$ from 75 < M < 115 GeV
- 85% increase in statistics
 - ← Extend to $|\eta| < 1.1, 1.5 < |\eta| < 3.2$
 - Include EC-EC events
 - Include electrons near calorimeter module (phi-mod) boundaries
 - Track reconstruction improvements
- 560,267 events
- Low QCD backgrounds (EW negl.)
 - ✤ CC-CC: 0.4%; CC-EC, EC-EC: < 4%</p>
- ♦ MC: PYTHIA, CTEQ6L1

Energy Calibration

- Global energy scale modeling in previous analysis
 - Shape dependence inadequate for different detector responses of extended acceptance regions
- New method corrects energy as a function of L_{inst} first, then η_{det}
 - ✤ Z mass peak scaled to LEP value (91.1875 GeV) in each bin
 - Separate calibrations for data and MC
- After calibration, mass peak L_{inst} dependence negligible, η_{det} dependence reduced from 2 GeV to 100 MeV (data), 10 MeV (MC)

B. Quinn University of Mississippi

MC Corrections/Reweightings

- 춖
- Separate energy resolution smearing and efficiency corrections for CC phi-mod center, CC phi-mod boundary, EC electrons
- Efficiency corrections measured via tag-and-probe method, and applied as functions of P_T and η
- *L_{inst}* and vertex *z* distribution reweighting
- Higher order effects not in PYTHIA
 - + 2D (P_T , η) reweighting; NNLO boson mass reweighting

B. Quinn University of Mississippi

$sin^2 \theta_W$ Extraction

- Raw A_{FB} measurement is compared to reweighted MC A_{FB} templates corresponding to different sin²θ_W values
 - ◆ Different sin² θ_W predictions obtained by reweighting generator level 2D (M_{Z/γ*}, cosθ*) distribution of default MC (sin² θ_W = 0.232)
 - ✤ Done separately for CC-CC, CC-EC, EC-EC events, and for RunIIa (1.1 fb⁻¹ low L_{inst}) and RunIIb (8.6 fb⁻¹ high L_{inst}) running periods

	CC-CC	CC-EC	EC-EC	Combined	
$\sin^2 heta_W$	0.23086	0.23108	0.22910	0.23098	D0 9.7 fb ⁻¹ : PRELIMINARY
statistical unc.	0.00116	0.00047	0.00276	0.00042	
systematic unc.				0.00014	Upper bound estimate. Final value
Energy scale	0.000002	0.000009	0.000059	0.00012	← being finalized.
Energy smear	0.000010	0.000022	0.000126	0.000018	\leftarrow Vary smear factor $\pm 1\sigma$
Background	0.000018	0.000010	0.000025	0.000008	
Charge misID	0.000020	0.000036	0.000121	0.000030	\leftarrow Vary correction factor $\pm 1\sigma$
Electron ID	0.000081	0.000078	0.000053	0.000066	\leftarrow Vary correction factor $\pm 1\sigma$
total unc.				0.00044	
PDF unc.				0.00029	← Quadrature sum of eigenvectors,
	1				scaled to 68% CL

 $sin^2 \theta_W = 0.23098 \pm 0.00042 \pm 0.00014 \pm 0.00029$ (stat) (syst) (PDF)

In Standard Model context, with on-shell renormalization scheme, ResBos EBA correction

$$sin^2 \theta^l_{eff} = 0.23106 \pm 0.00053$$

World's Best From Hadron Collider & from Light Quark Interactions

B. Quinn University of Mississippi Measurement Comparisons

- CDF 9.2 fb⁻¹ Dimuon: $sin^2 \theta_{eff}^l = 0.2315 \pm 0.0010$
- D0 9.7 fb⁻¹ Dielectron: $sin^2 \theta_{eff}^l = 0.23106 \pm 0.00053$ PRELIMINARY
 - Most precise from hadron colliders and with light quark couplings

Still To Come: strong PDF constraints (full dataset unless indicated)

CDF:

- ✤ Dielectron A_{FB} 4 times stats, PDF limiting systematic
- + Dielectron angular coefficients $sin^2 \theta_{eff}^l$ (2.1 fb⁻¹): PRD88, 072002 (2013) arXiv:1307.0770

D0:

- + Dielectron A_{FB} : $sin^2 \theta_{eff}^l$ PRL soon, PRD with A_{FB} , coupling details later
- + Dimuon A_{FB} Z peak, low mass, high mass analyses
- Charge asymmetries:
 - ← W muon (7.3 fb⁻¹): PRD 88, 091102(R) (2013), arXiv:1309.2591
 - ✤ W boson (electron channel): Submitted 12/10/13: PRL, arXiv:1312.2895
 - ✤ W electron: PRD in preparation
- ✤ Z Ø*, Z rapidity, angular coefficients

Rapidity Distribution

Background Distribution

B. Quinn	
University	of Mississippi

 $sin^2 heta^l_{eff} = 0.2328 \pm 0.0010$ $sin^2 heta_W = 0.2246 \pm 0.0009$ $M_W(indirect) = 80.297 \pm 0.0048$

PRD88, 072002 (2013) arXiv:1307.0770

B. Quinn University of Mississippi

W Charge Asymmetry

Most precise direct measurement to date

Coverage to |η| < 3.2, can be used to improve PDF sets, particularly at high x

Submitted 12/10/13: PRL, arXiv:1312.289

B. Quinn	
University	of Mississippi