Recent constraints on the parton distributions in the proton and the measurement of $\alpha_{\rm S}$ from ATLAS and CMS

Mark Sutton The University of Sussex

On behalf of the ATLAS and CMS Collaborations

Recontres de Moriond EW 15th - 22nd March 2014 - La Thuile

30

Preface

- The LHC performed extremely well during Run 1
- Both ATLAS and CMS were able to collect proton-proton data samples in excess of 25 fb⁻¹ per experiment
 - Most analyses still with the smaller 2011 data set
 - Some analyses of 2012 data starting to become • available
- Both collaborations have a large, and developing portfolio of precision measurements
 - Discuss, but a subset of those which may be useful in a QCD fit
 - inclusive jet, Dijet production
 - Inclusive prompt photon production •
 - ttbar production •
 - **Drell-Yan production** ۲
 - Inclusive W production and W production in • association with charm

Contributions from different physics processes

- Different final states provide information on different subprocesses
 - Use HERA DIS to constrain partons at low-x
 - At Born level, scattering off of quarks, one momentum parton fraction x

$$d\sigma_{\text{DIS}} \sim (1 - (1 - y_{\text{Bj}})^2) F_2(x, Q^2) - y_{\text{Bj}}^2 F_L(x, Q^2)$$
$$F_2 = x \sum_q e_q^2 (q(x) + \bar{q}(x))$$

- Sensitive to the gluon distribution through $\mathcal{O}(lpha_s)$ corrections

• For LHC collisions with two momentum fractions, x_1 and x_2

$$d\sigma = \sum_{i,j} \int dx_1 \int dx_2 \ f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \ \hat{\sigma}_{ij}(x_1, x_2, \mu_R^2)$$

 Dijet production, ttbar, inclusive photon ... all directly sensitive to the gluon distribution and the strong coupling - and the valence quarks at high E_T

 Electroweak boson production sensitive to the valence and sea quarks distributions

- PDF fits using only data from experiments with lower momentum transfer than available at the LHC have large uncertainties for the LHC kinematic region
 - As large as ~ 5% for the gg→Higgs (and larger) for top production
 - HERAPDF slightly softer that CT10 at high *x*, but normalisation the similar at lower *x*
 - Softer ABM gluon distribution

M Sutton - Recent constraints on the proton PDF and $\alpha_{\rm S}$ from ATLAS and CMS

Incoming partons inclusive jet production

subprocess fraction

- Except at the highest E_T jets are produced predominantly by quark-gluon scattering
 - More significant contribution from the gluon
 - Larger phase space for initial state radiation
- At high E_T produced from partons at much higher x - dominated by quark-quark scattering
- **Differences between PDF sets** ۲
 - Most notable at high masses and high ET where the data statistics are low and less constraining
 - Softer gluon from ABM predicts smaller fractional contribution from qg scattering

Dijet production from 2011 data

• HERAPDF, with slightly lower gluon contribution at high x than CT10, describes the data reasonably well

• ATLAS jets fit, epATLJet13 has significantly smaller uncertainties at high masses

Quantitative analysis

- Generate pseudo-experiments using different PDFs
 - Include PDF and other theory uncertainties in both generation and χ^2 definition
- Calculate the χ^2 for each replica

PDF set	y^* ranges	mass range	$\mathbf{P}_{\mathbf{obs}}$	
		(full/high)	R = 0.4	R = 0.6
	$y^* < 0.5$	high	0.742	0.785
CT10	$y^* < 1.5$	high	0.080	0.066
	$y^* < 1.5$	full	0.324	0.168
HERAPDF1.5	$y^* < 0.5$	high	0.688	0.504
	$y^* < 1.5$	high	0.025	0.007
	$y^* < 1.5$	full	0.137	0.025
MSTW 2008	$y^* < 0.5$	high	0.328	0.533
	$y^* < 1.5$	high	0.167	0.183
	$y^* < 1.5$	full	0.470	0.352
NNPDF2.1	$y^* < 0.5$	high	0.405	0.568
	$y^* < 1.5$	high	0.151	0.125
	$y^* < 1.5$	full	0.431	0.242
ABM11	$y^* < 0.5$	high	0.024	$< 10^{-3}$
	$y^* < 1.5$	high	$< 10^{-3}$	$< 10^{-3}$
	$y^* < 1.5$	full	$< 10^{-3}$	$< 10^{-3}$

ABM11 disfavoured

M Sutton - Recent constraints on the proton PDF and α_{S} from ATLAS and

QCD fit

- The jet data provide constraints on the gluon distribution
- · Fits are performed using DIS HERA from and either ATLAS or CMS data
 - ATLAS have, previously, used inclusive jet data from 2.76 TeV and 7 TeV data form 2010 (EPJC (2013) 73 2509)
 - CMS fit uses inclusive jet data from 2011 (CMS-PAS-SMP-12-028)
- The HERAFitter package is used, with LHC cross sections reproduced using fastNLO and APPLgrid
- Both ATLAS and CMS use the same parameterisation

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{aligned}$$

- Additional constraints, A_g , A_{u_v} , A_{d_v} from sum rules, $B_{\bar{U}} = B_{\bar{D}}$ and $A_{\bar{U}} = A_{\bar{D}}(1 f_s)$ to ensure the same normalisation as $x \to 0$ and $C'_g = 25$
- The strange quark distribution is constrained to be proportional to the *d* type sea, $xs = xf_sD$, where $f_s = 0.31$
- This yields a 13 parameter fit, using a fixed strong coupling and a starting scale of $Q^2 = 1.9 \text{ GeV}^2$

Recontres de Moriond EW 15th - 22nd March 2014 - La Thuile

Strong coupling

- Use a set of predictions for the cross section using different CT10 PDF sets fitted using a different strong couplings
- Fit to data from PRD 87 (2013) 112002

$p_{\rm T}$ range	Q	$\alpha_S(M_Z)$	$\alpha_S(Q)$	data	$\chi^2/n_{ m dof}$
(GeV)	(GeV)			points	
114–196	136	$0.1170{}^{+0.0062}_{-0.0045}$	$0.1103 {}^{+0.0054}_{-0.0039}$	20	6.2/19
196–300	226	$0.1179 {}^{+0.0067}_{-0.0049}$	$0.1037^{+0.0052}_{-0.0037}$	20	7.6/19
300–468	345	$0.1194 {}^{+0.0067}_{-0.0049}$	$0.0993 {}^{+0.0045}_{-0.0033}$	25	8.2/24
468–638	521	$0.1188 {}^{+0.0072}_{-0.0051}$	$0.0940{}^{+0.0044}_{-0.0032}$	20	10.6/19
638–905	711	$0.1193 {}^{+0.0080}_{-0.0056}$	$0.0910{}^{+0.0044}_{-0.0033}$	22	11.4/21
905–2116	1007	$0.1180 {}^{+0.0104}_{-0.0061}$	$0.0868 {}^{+0.0054}_{-0.0033}$	26	39.4/25

Combined fit yields

 $\alpha_S(M_Z) = 0.1185^{+0.0065}_{-0.0041}$

- Also shown, fits from
 - CMS tt cross section: [arXiv:1307.1907]
 - CMS R32: [Eur.Phys.J. C73 (2013) 2604]
 - CMS 3-jet mass: [CMS-PAS-SMP-12-027]
- Clearly see the running of the strong coupling at scales greeter than an order of magnitude larger than seen before

Central photon production

18.7

-

36.9

• Again, ABM11 softer at high E_T

M Sutton - Recent constraints on the proton PDF and $\alpha_{\rm S}$ from ATLAS and CMS

22.6

-

44.7

27.6

33.5

 χ^2 for 23 degrees of freedom

NNPDF2.3

- Cross section uncertainty dominated by gluon distribution cancels in the asymmetry, as do many systematic uncertainties.
- Due to the v, cannot reconstruct the W kinematics completely, but the charged lepton asymmetry

$$\mathcal{A}_{W}^{l} = \frac{d\sigma_{W^{+}}/d\eta_{l^{+}} - d\sigma_{W^{-}}/d\eta_{l^{-}}}{d\sigma_{W^{+}}/d\eta_{l^{+}} + d\sigma_{W^{-}}/d\eta_{l^{-}}}$$

also sensitive to the valence quark distribution.

18

Fits to the EW Boson data

• For the fits to the boson data, both ATLAS and CMS perform fits both with constrained strange density, and where where the A and C coefficients of the strange density are allowed to vary independently

$$xs(x) = A_{\bar{s}}x^{B_s}(1-x)^{C_s}$$

• So a 15 parameter fit, with

$$r_s = (s + \bar{s})/2\bar{d}$$

$$R_s = (s + \bar{s})/(\bar{d} + \bar{u})$$

- APPLgrid interfaced to MCFM used for the reproduction of the W, Z, and W+c cross section at NLO, or at NNLO using K-factors from FEWZ
- The ATLAS-epWZ12 NNLO fit (NLO and LO also performed): PRL 109, 012001 (2012)
 - The W charge asymmetry data help to constrain the u and d valence distributions
 - Z data provides some constraint on the strange distribution
- The CMS fit, uses W asymmetry data and W+c to constrain the strange quark distribution: arXiv:1312.6283v2
 - MCFM calculation at the bare charm level fit uses data unfolded using charm fragmentation fractions for comparison
- ATLAS "eigenvector" fit to the new ATLAS W+c data: arXiv:1402.6263v1
 - Using combination of cross section predictions from the eigenvector sets of the HERA PDF1.5 in aMC@NLO including full parton shower and fragmentation

21

Summary

- Both ATLAS and CMS have a large, and growing portfolio of precision measurements available that all have the
 potential to help constrain the parton distributions in the proton
 - Inclusive jet and dijet production
 - W and Z data, including with Charm
 - Prompt photon,
 - · Heavy quark and top pair production
- Only a small selection of the data has been discussed here higher luminosity is already available and being analysed with a view to reducing both the statistical and systematic uncertainties
- · For many measurements, theoretical uncertainties are often comparable to, or larger, than those from the data
- Already including the currently available data in the fit is seen to significantly reduce the uncertainties on both on the gluon and quark distributions
- Developments in the grid technology (fastNLO and APPLgrid) mean that these data can be used in a QCD fit
 - We have come a long way, and have started out on the journey towards realising the full potential of the data
- It will be a very interesting time ahead ...