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The concordance flat ΛCDM model...

13.4 billion years ago
(at photon decoupling)

Composition today

The simplest model consistent with present observations.

(Nearly)
Massless
Neutrinos
(3 families)

Plus flat spatial geometry+initial conditions 
from single-field inflation

ν-to-γ energy density 
ratio fixed by SM physics

5%

27%

68%

∑ mν=0.06 eVMin. value from 
oscillations experiments



  

There are many ways in which the neutrino sector can be extended beyond the 
standard picture.

● Masses larger than 0.06 eV.

– No reason to fix at the minimum mass. 

– Laboratory upper limit Σm
ν
 < 7 eV from β-decay endpoint.

● More than three flavours.

– Sterile neutrinos and discrepancies potentially solved by them?

● Hidden interactions

– Neutrino-neutrino, neutrino-dark matter, neutrino-dark energy.

The neutrino sector beyond ΛCDM...

Ων , 0 h2=∑ mν

94 eV
=??

N eff≠3??

This talk

Neutrino dark matter



  

Measuring neutrino masses with 
cosmology...



  

For most of the observable history of the universe neutrinos have significant speeds.

Free-streaming neutrinos...

c
ν c

ν

Gravitational
potential wells

● eV-mass neutrinos become nonrelativistic 
near γ decoupling.

● Even when nonrelativistic, neutrinos have 
large thermal motion. 

Avoid 
gravitational
capture

CMB 
anistropies

Large-scale
matter distribution

vthermal =
T ν

mν
≃ 50.4(1+ z)(eV

mν
) km s−1

λFS≡√8π2 vthermal
2

3Ωm H 2 ≃4.2√ 1+ z
Ωm ,0 ( eV

mν
) h−1 Mpc ; k FS≡

2π
λFS

Free-streaming 
scale:

≪FS

k≫k FS

Non-clustering

cν c
ν



  

c

ν

c

c ν

c

c cν ν c ν

Some time later...

Only CDM 
clusters

Both CDM and
neutrinos cluster

ν

Consider a neutrino and a cold dark matter particle encountering two gravitational 
potential wells of different sizes in an expanding universe:

→ Cosmological neutrino mass measurement is based on observing this free-
streaming induced potential decay at λ<< λFS.

λ≫λ FS λ≪λ FS

cν c
ν

Ψ

Ψ

Potential stays the same 
(during matter domination)

Potential decays



  

Galaxy 
redshift 
surveys

Lyman-α

Replace some CDM 
with neutrinos

Ωνh2=∑ mν

94eV

fν = Neutrino 
fraction

P (k )=〈∣δ(k )∣2〉

Cluster
abundance

Δ P
P

∝8 f ν≡8
Ων
Ωm

Large-scale matter distribution...



  

Galaxy 
redshift 
surveys

Lyman-α

Ωνh2=∑ mν

94eV

fν = Neutrino 
fraction

P (k )=〈∣δ(k )∣2〉

Cluster
abundance

Δ P
P
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Ων
Ωm

Large-scale matter distribution...



  

Fixed total matter density
Free H

0
 (sound horizon adjusted)

∑ mν=1×1.2 eV

∑ mν=3×0.4 eV

∑ mν=0 eV

Uplifting in the 
acoustic oscillation 
phase

Early ISW Effect 
(after photon 
decoupling)

CMB anisotropies...

WMAP ACT, SPT

Planck



  

Post-Planck constraints...

WMAP (9 years)

95% C.L. upper limits

ΛCDM+neutrino mass (7 parameters)

W9 + ACT 

Planck + WMAP Polarisation

Planck + WP + ACT ℓ > 1000 + SPT ℓ > 2000 

∑ mν<0.66 eV (95%C.L.)
Best CMB-only bound

Ade et al.[Planck] 2013

(ωb ,ωm , H 0, As , ns , τ)

baryon 
density

matter density

primordial fluctuation 
amplitude & spectral index 

optical depth
to reionisation

Hubble parameter
ΛCDM parameters



  

Post-Planck constraints...

WMAP (9 years)

95% C.L. upper limits

ΛCDM+neutrino mass (7 parameters)

W9 + ACT 

Planck + WMAP Polarisation

Planck + WP + ACT ℓ > 1000 + SPT ℓ > 2000 

∑ mν<0.66 eV (95%C.L.)
Best CMB-only bound

Ade et al.[Planck] 2013

Planck + WP + (ACT ℓ > 1000 + SPT ℓ > 2000) 
+ baryon acoustic oscillations 

∑ mν<0.25 eV (95%C.L.)
Best minimal bound

W7+ matter power spectrum + HST H
0

Formally similar to the pre-Planck
best minimal bound, but arguably 
less prone to issues of nonlinearities.



  

Galaxy 
redshift 
surveys

Lyman-α

Ωνh2=∑ mν

94eV

fν = Neutrino 
fraction

Δ P
P

∝8 f ν≡8
Ων
Ωm

Matter power spectrum vs BAO...

Replace some 
CDM with neutrinos

Linear Nonlineark3 P(k )
2π2 <1

k3 P (k )
2π2 >1
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Linear theory

1-loop (nonlinear)

Time RG (nonlinear)

HaloFit (nonlinear)

N-body (nonlinear)

Pietroni 2008

Matter power spectrum = Shape
Baryon acoustic oscillations = Location of oscillatory features 



  

The take-home message...

● Formally, the best minimal (7-parameter) upper bound on Σ m
ν
 is still hovering 

around 0.3 eV post-Planck.

● The bound has however become more robust against uncertainties:

– Less nonlinearities in BAO than in the matter power spectrum.
– Does not rely on local measurement of the Hubble parameter...
– … or on the choice of lightcurve fitters for the Supernova Ia data.

●  Dependence on cosmological model used for inference?



  

Model dependence: parameter degeneracies...

● We do not measure the neutrino mass per se, but rather its indirect effect on the 
clustering statistics of the CMB/large-scale structure.

– It is not impossible that other cosmological parameters could give rise to 
similar effects (within measurement errors/cosmic variance).

∑ mν=0eV

∑ mν=1.2eV



  

Model dependence: parameter degeneracies...

● We do not measure the neutrino mass per se, but rather its indirect effect on the 
clustering statistics of the CMB/large-scale structure.

– It is not impossible that other cosmological parameters could give rise to 
similar effects (within measurement errors/cosmic variance).

Tweak H
0

∑ mν=0eV

∑ mν=1.2eV



  

Model dependence: parameter degeneracies...

● We do not measure the neutrino mass per se, but rather its indirect effect on the 
clustering statistics of the CMB/large-scale structure.

– It is not impossible that other cosmological parameters could give rise to 
similar effects (within measurement errors/cosmic variance).

Tweak H
0
 and ω

dm

∑ mν=0eV

∑ mν=1.2eV

Imagine what might happen 
if we drop spatial flatness, 
or vary the dark energy 
EoS, etc. too... 



  

Post-Planck...

WMAP (9 years)

95% C.L. upper limits

ΛCDM+neutrino mass (7 parameters)

W9 + ACT 

Planck + WMAP Polarisation

Planck + WP + ACT ℓ > 1000 + SPT ℓ > 2000 

∑ mν<0.66 eV (95%C.L.)
Best CMB-only bound

Ade et al.[Planck] 2013

Planck + WP + (ACT ℓ > 1000 + SPT ℓ > 2000) 
+ baryon acoustic oscillations 

∑ mν<0.25 eV (95%C.L.)

Dropping assumption of spatial flatness:

∑ mν<0.32 eV (95%C.L.)

Other extensions??  Still to be checked!

Best minimal bound

W7+ matter power spectrum + HST H
0



  

A fourth neutrino??



  

It doesn't even have to be a real neutrino...

∑i
ρν , i+ρX=N eff (78 π2

15
T ν

4)
=(3.046+Δ N eff )ρν

(0)

Any particle species that 

● decouples while ultra-relativistic and before z ~ 106

● does not interact with itself after decoupling

 will behave (more or less) like a neutrino as far as the CMB and LSS are concerned. 

Neutrino 
temperature
per definition

Corrections due to non-instantaneous 
decoupling,finite temperature effects, 
and flavour oscillations

Three SM neutrinos

Other non-interacting relativistic
energy densities, e.g., sterile 
neutrinos, axions, hidden 
photons, etc.

Smallest relevant
scale enters the horizon



  

Some pre-Planck observations preferred an excess of non-interacting relativistic 
energy density → “extra neutrinos”. 

Dunkley et al. [Atacama Cosmology Telescope] 2010 Keisler et al. [South Pole Telescope] 2011

WMAP7+ACT

WMAP7+ACT+H
0
+BAO

WMAP7

S
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nd
ar

d 
va
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e

S
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ar
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lu
e

Evidence for N
eff 

> 3 circa 2011...



  

New data from WMAP, ACT and SPT in late 2012 – early 2013 favour an N
eff

 value 
compatible with the standard value of 3.046.

Then the evidence disappeared again... largely...

Archidiacono, Giusarma, Melchiorri & Mena,1303.0143

WMAP 9 years, 1212.5226; 
ACT 3 seasons, 1301.0824 
SPT (2540 deg2), 1212.6267

N
eff

 > 3 at 2σ+.

1σ error bars



  

Post-Planck N
eff

 ...

Placnk-inferred N
eff

 compatible with 3.046 at better than 2σ. 

Or maybe not...
More later...

2σ error bars

Very possibly the end of the N
eff

 story... 



  

The LSND/MiniBooNE/Reactor anomalies can 
be explained by oscillations into a sterile neutrino 
with oscillation parameters:

ΔmSBL
2 ∼1eV2

sin2 2θSBL∼3×10−3
ΔN eff=1

Implications for the short baseline sterile neutrino...

ms> mα

ms< mα

Hannestad, Tamborra & Tram 2012
also older works of Abazajian, Di Bari, 
Foot, Kainulainen, etc. from 1990s-early 2000s 

SBL-preferred

(νe↔νμ)(νe↔νμ)

ΔN eff

Fully thermalised sterile 
neutrino population!



  

The LSND/MiniBooNE/Reactor anomalies can 
be explained by oscillations into a sterile neutrino 
with oscillation parameters:

ΔmSBL
2 ∼1eV2

sin2 2θSBL∼3×10−3
ΔN eff=1

msterile>√ΔmSBL
2 ∼1eV

● Already a problem for WMAP (+LSS+HST):

● Post-Planck: 

msterile<0.45 eV(95%C.L.) Hamann et al. 2010

Implications for the short baseline sterile neutrino...

Ade et al. [Planck collaboration] 2013

SBL sterile neutrino
(νe↔νμ)

msterile<0.42 eV ; N eff<3.8 (95%C.L.) Planck+WP+highL+BAO
(ΛCDM+N

eff
+m

sterile
)



  

Foot & Volkas 1995

The SBL sterile neutrino is problematic for cosmology only because it is produced in 
abundance in the early universe. 

→ If production can be suppressed, then there is no conflict.

● Some possible mechanisms:

– A large lepton asymmetry (L>>B~10-10) generates an effective mass for the 
active neutrino to suppress effective active-sterile mixing; L ~ 10-2 will do.  

– Hidden sterile neutrino self-interaction generates an effective mass for the 
sterile neutrino.

– A low reheating temperature (T
R
 < 10 MeV) → incomplete thermalisation of 

even the SM neutrinos.

Reconciling the SBL sterile neutrinos with cosmology??

Dasgupta & Kopp 2014
Hannestad, Hansen & Tram 2014



  

Discrepancies potentially resolved by 
a fourth neutrino??



  

Planck discrepancies with other observations... 1.

● Hubble parameter H
0
: Planck-inferred value lower than local HST measurement.

● Small-scale RMS fluctuation σ
8
: Planck CMB prefers a higher value than galaxy 

cluster count and galaxy shear from CFHTLens.

H 0=73.8±2.4 km s−1 Mpc−1

Riess et al. 2011

Hubble space telescope
Exploit the N

eff 
– H

0
 degeneracy and 

introduce to a large N
eff

 to bring HST 
and Planck in line with one another.



  Ade et al. [Planck collaboration] 2013

N eff=3.62±0.25(1σ)
Planck + HST

(ΛCDM+ΔN
eff 

7-parameter model )

… Not quite the SBL sterile 
neutrino because this fit 
assumes massless neutrinos...



  

Planck discrepancies with other observations... 2.

● Hubble parameter H
0
: Planck-inferred value lower than local HST measurement.

● Small-scale RMS fluctuation σ
8
: Planck CMB prefers a higher value than galaxy 

cluster counts and galaxy shear from CFHTLens.

Ade et al. [Planck collaboration] 2013σ8(Ωm /0.27)0.3=0.782±0.01

σ8(Ωm /0.27)0.46=0.774±0.04

Planck SZ clusters

CFHTLens galaxy shear Heymans et al. 2013



  

Solved by a fourth, massive neutrino??

At face value a fourth, massive neutrino is a possible solution. 

Hamann & Hasenkamp 2013
also Wyman et al. 2013,
Battye & Moss 2013

ΔN eff=0.61±0.30
ms=(0.41±0.13) eV

CMB+all
(ΛCDM+ΔN

eff
+m

s

8-parameter model)CMB+ClustersCMB+HST

CMB+All CMB+All

● Large N
eff

 driven mainly by HST

● Large m
s
 driven mainly by cluster counts.



  

Solved by a fourth, massive neutrino??

Hamann & Hasenkamp 2013
also Wyman et al. 2013
Battye & Moss 2013

CMB only

CMB+all

68% and 95% contours

Reactor anomaly
LSND



  

Solved by a fourth, massive neutrino??

Hamann & Hasenkamp 2013
also Wyman et al. 2013
Battye & Moss 2013

CMB only

CMB+all

68% and 95% contours

Reactor anomaly
LSND

My take: discrepancies are most likely due to poorly understood nonlinearities 
(cluster counts are particularly difficult to model).
● Take the fourth neutrino solution cum magno grano salis!



  

Summary...

● Precision cosmological observables can be used to “measure” the absolute 
neutrino mass scale based on the effect of neutrino free-streaming.

● Existing precision cosmological data already provide strong constraints on the 
neutrino mas sum.
– No significant formal improvement between the best pre-Planck and post-

Planck upper bounds (at least not for the minimal 7-parameter model).

– But the post-Planck bound is arguably more robust.  

● The fourth neutrino??  There are outstanding discrepancies between Planck 
and measurements from HST, clusters, and cosmic shear.
– Taken at face value these discrepancies can be resolved by a fourth neutrino 

(although not necessarily the same one in all cases...).

– But personally I'd take it cum magno grano salis.
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