

Rencontres de Moriond on "EW Interactions and Unified Theories" 15-22.03.2014, La Thuile (Italy)

The top Yukawa coupling

- Two main probes of ttH coupling at LHC:
 - gluon fusion production cross section ($\sigma \sim |y_t|^2$), assuming no BSM particles in the loop.
 - \bullet associated production cross section, a tree level process proportional to $|y_t|^2$
- The first is pretty well known: already now the experimental accuracy on y_t is ~20%
- Significant progress from the experimental side on the second point in the last year.

- Higgs decays at this mass:
 - BR H→bb ~60%, H→WW^(*) ~20% and H→γγ, H→ττ, H→ZZ^(*) significantly smaller BR but produce experimentally accessible signatures
- ttH events are crowded due to the presence of additional b-jets, jets/leptons from the top quarks decays

• tt + b-jets, to search for $H \rightarrow bb$

- old staple. 7 and 8 TeV data analyzed.
- high rate but big tt+bb bkg and complex multi-jet final state
- Public document: HIG-12-035 / HIG-13-019 (together with the low sensitivity channel **tt** + **ττ: with hadronically decaying taus**)

• tt + $\gamma\gamma$, to search for $H \rightarrow \gamma\gamma$:

- 8 TeV data analyzed.
- low rate. important for the high-lumi projection as systematics play a negligible role in it
- Public document: HIG-13-015
- tt + leptons, to search for $H \rightarrow WW$, ZZ, $\tau\tau (\tau \rightarrow \ell)$
 - 8 TeV data analyzed. Latest CMS search
 - low rate. clean and low bkg signatures with 2,3,4 leptons
 - Public document: HIG-13-020

H->hadrons

19.3 fb⁻¹ @ 8 TeV

the old analysis for 5.1 fb⁻¹ @ 7 TeV is not discussed here but included in the final results

HIG-12-035 / HIG-13-019

Channels and Signatures

C. Botta (CERN)

H decay	top pair decay	trigger	signature	t W ⁺ l ⁺ 0000000 b b b 0000000 b
bb	semileptonic	single lepton (p⊤>27(e), 24(µ) GeV)	1 e/μ, p _T >30 GeV ≥4 jets (≥2b-jets), p _T >30 GeV (#sig~90 sig/bkg~0.004)	\overline{t} W^{Q} q \overline{b} b ν_{ℓ}
bb	dileptonic	double lepton (p⊤>17,8 GeV)	1 e/μ, p _T >20 GeV 1 e/μ, p _T >10 GeV ≥3 jets (≥2b-jets), p _T >30 GeV (#sig~30 sig/bkg~0.002)	g $\overline{0000000}$ \overline{t} $W^ \overline{\nu}_\ell$ ℓ^-
$τ_h τ_h$	semileptonic	single lepton (p _T >27(e), 24(μ) GeV)	1 e/μ, p _T >30 GeV 2 τ, p _T >20 GeV ≥4jets (1-2b-jets), p _T >30 GeV (#sig~2 sig/bkg~0.003)	g $\overline{0000000}$ t W^+ ℓ^+ H τ^+ τ^+_h
				g $\overline{0000000}$ $\tau^ \nu_{\tau}$

. Ve

-in-

8

Analysis strategy

• Further categorization in NJets and Nb-Jets

- S/B increases with Njets and Nbjets:
 - 16 categories, best S/B = 0.03
- All bkg are modeled with MC simulation
 - main bkg tt+jets (MADGRAPH, tt+3 extra parton)
 - separated in sub-samples: (tt+lf, tt+bb,tt+b,tt+cc)
 - data in bins with low S/B are used to constraint these bkg sources
- **BDTs** are used to further improve sensitivity
 - input variables related to: reconstructed object kinematic, event shape, b-tagging discriminator value

Final distributions

 Signal extraction is performed fitting the BDT outputs (3 example out of 16 distributions)

HIG-13-015

Channels and Signatures

H decay	top pair decay	trigger	signature	g $\overline{000000}$ t W^+ ℓ^+
Yγ	semileptonic or dileptonic	di-photon (p⊤>36,22 GeV)	$p_{T(\gamma 1)} > m_{\gamma \gamma}/2$ $p_{T(\gamma 2)} > 25 GeV$ $\geq 1 e/\mu, p_T > 20 GeV$ $\geq 2 jets (\geq 1b-jets), p_T > 25 GeV$ (#sig~0.3 sig/bkg~1 under signal peak)	$g 0000000$ $\overline{t} W^{-} \overline{q}$ \overline{q} \overline{b} \overline{b}
ŶŶ	hadronic	di-photon (p⊤>36,22 GeV)	$p_{T(\gamma 1)} > m_{\gamma \gamma}/2$ $p_{T(\gamma 2)} > 25GeV$ $o e/\mu, p_T > 20 GeV$ $\ge 5 jets (\ge 1b-jets), p_T > 25 GeV$ (#sig~0.5 sig/bkg~0.3 under signal peak)	g 0000000 $t W^+ \bar{q}$ g 0000000 $t W^- \bar{q}$

∖ b

Analysis strategy

- Analysis limited by statistic (low BR H→γγ) but distinctive signature:
 - two energetic photons, narrow Higgs peak over falling bkg in $M_{\gamma\gamma}$ distribution
 - the only channel that can eventually confirm that an excess is due to h(126)
- Strategy: fit the M_{γγ} distribution using the diphoton spectrum sidebands to fit the bkg
 - Data fitted with simple exponential (second order polinomial) in the leptonic (hadronic) channel

HIG-13-020

Channels and Signatures

C. Botta (CERN) Analysis Strategy

- Main focus: suppress and control reducible background (~up to 2/3 of the total bkg after selection)
 - tt with fake l from b-jets
 Dedicated lepton ID (MVA) developed to suppress it.
 - data-driven estimate: measurement of the probability for a lepton from b-jet to pass the MVA ID requirement
- Inclusive selection to preserve signal efficiency.
 Full event kinematic cannot be reconstructed
 - to improve sensitivity:
 - categorize events (for 2l, 3l) in positive and negative total lepton charge (ttW, WZ and Wjets are asymmetric), 5% gain in sensitivity
 - combine partial kinematic variables in a BDT (for 2l, 3l), 10% gain in sensitivity

√s = 8 TeV, L = 19.6 fb⁻¹

Final distributions MS Preliminary 4I channel

Events

Data Htt H

ttZ/γ*

Fakes

Others

4l

📃 ZZ

3

2.5

1.5

0.5

- signal extraction, in each category:
 - 2*l*, 3*l*: simple BDT with few kinematic variables
 - 41: just use N(jet), since yields are small.
 - N(jet) used also as cross-check in 2l, 3l

uncertainty bands: systematic on bkg+signal prediction, after a fit to the data assuming SM ttH (μ =1)

Statistical Interpretation

https://twiki.cern.ch/twiki/bin/view/CMSPublic/ttHCombinationTWiki

Limits on $\mu = \sigma / \sigma_{SM}$

ttH Channel	95% CL upper limits on $\mu = \sigma / \sigma_{SM} \ (m_H = 125.7 \text{ GeV})$				
		Expected			
	Observed	Median Signal Injected	Median	68% CL Range	95% CL Range
$\gamma\gamma$	5.4	6.7	5.5	[3.5, 8.9]	[2.4, 14.1]
$b\overline{b}$	4.5	5.2	3.7	[2.6, 5.2]	[2.0, 7.0]
au au	12.9	16.2	14.2	[9.5, 21.7]	[6.9, 32.5]
41	6.8	11.9	8.8	[5.7, 14.2]	[4.0, 22.4]
31	6.7	4.7	3.8	[2.5, 5.8]	[1.8, 8.7]
Same-sign 21	9.1	3.6	3.4	[2.3, 5.0]	[1.7, 7.2]
Combined	4.3	2.9	1.8	[1.2, 2.6]	[0.9, 3.6]

- Observed yields and distributions are compared to the expectation for a SM Higgs with m_H = 125.7
- Median expected combined UL on μ:
 - in the absence of ttH signal: **1.8** at 95% CL
 - with the SM ttH production: 2.9 at 95% CL
- Observed UL is 4.3 at 95% CL
 - mainly driven by the observed excess in the ss μμ channel

- results from bb, γγ, τ_hτ_h, and multi-lepton final states : reached
 1×SM sensitivity on μ(ttH)! (was 2.6×SM at Moriond'13)
- direct access to the yt coupling

Compatibility

Leptonic channels

- The internal consistency of the 6 best-fit signal-strengths with a common value: 22%
- The observed p-value relative to μ =1 is 1.6 σ
 - 2.7 σ relative to μ =0 (1.2 σ expected)

- Significant progress on the search for ttH in the past year
 - several signatures have been explored: tt+bb, tt+τ_hτ_h, tt+γγ, tt+leptons
 - all the channels analysed on the full 8 TeV dataset
- We reached 1xSM sensitivity on μ(ttH)
 - we fit μ (ttH)=2.5^{+1.1}-1.0 compatible with the SM Higgs prediction (μ =1) at 1.6 σ
 - the excess is mainly driven by the same-sign $\mu\mu$ channel

Backup

Systematics

- Statistical methodology based on a binned likelihood spanning all channels
- The amount of signal is characterized by the parameter $\mu = \sigma / \sigma_{SM}$
- Uncertainties in signal and bkg predictions are incorporated by means of nuisance parameters
 - if same source of uncertainty impact more channels, only one nuisance is used to get the correlation in the uncertainty
 - nuisances are profile, allowing high-statistic signal-poor regions on data to constrain them

Rate Uncertainty			
Source	Signal	Backgrounds	Shape
Experin	nental		
Luminosity	2.2-2.6%	2.2-2.6%	No
Jet Energy Scale	0.0-8.4%	0.1–11.5%	Yes
CSV B-Tagging	0.9–21.7%	3.0-29.0%	Yes
Lepton Reco. and ID	0.3–14.0%	1.4-14.0%	No
Lepton Fake Rate ($H \rightarrow leptons$)	N/A	35.1-45.7%	Yes
Tau Reco. and ID (H \rightarrow hadrons)	11.3–14.3%	24.1-28.8%	Yes
Photon Reco. and ID (H \rightarrow photons)	1.6-3.2%	N/A	Yes
MC Statistics	N/A	0.2-7.0%	Yes
Theoretical			
NLO scale and pdf	9.7-75.0%	3.4-14.7%	No
MC Modeling	2.3-5.1%	1.7-24.2%	Yes
H Contamination (H \rightarrow photons)	36.7	-41.2%	No

top coupling from combination

Analysis strategy yy

CERN

C. Botta (CERN)

Analysis strategy bb

Source	Shape	Remarks
Luminosity	No	Signal and all backgrounds
Lepton ID/Trigger efficiency	No	Signal and all backgrounds
Pileup	No	Signal and all backgrounds
Top $p_{\rm T}$ reweighting	Yes	Only tt background
Jet Energy Resolution	No	Signal and all backgrounds
Jet Energy Scale	Yes	Signal and all backgrounds
b-Tag bottom-flavor contamination	Yes	Signal and all backgrounds
b-Tag bottom-flavor statistics (linear)	Yes	Signal and all backgrounds
b-Tag bottom-flavor statistics (quadratic)	Yes	Signal and all backgrounds
b-Tag light-flavor contamination	Yes	Signal and all backgrounds
b-Tag light-flavor statistics (linear)	Yes	Signal and all backgrounds
b-Tag light-flavor statistics (quadratic)	Yes	Signal and all backgrounds
b-Tag Charm uncertainty (linear)	Yes	Signal and all backgrounds
b-Tag Charm uncertainty (quadratic)	Yes	Signal and all backgrounds
QCD Scale $(t\bar{t}H)$	No	Scale uncertainty for NLO $t\bar{t}H$ prediction
QCD Scale $(t\bar{t})$	No	Scale uncertainty for NLO $t\bar{t}$ and single top predictions
QCD Scale (V)	No	Scale uncertainty for NNLO W and Z prediction
QCD Scale (VV)	No	Scale uncertainty for NLO diboson prediction
PDF (gg)	No	Parton distribution function (PDF) uncertainty for gg
		initiated processes $(t\bar{t}, t\bar{t}Z, t\bar{t}H)$
$PDF(q\overline{q})$	No	PDF uncertainty for $q\overline{q}$ initiated processes (t $\overline{t}W$, W, Z).
PDF (qg)	No	PDF uncertainty for qg initiated processes (single top)
Madgraph Q^2 Scale (tt+0p,1p,2p)	Yes	Madgraph Q^2 scale uncertainty for $t\bar{t}$ +jets split by
		parton number. There is one nuisance parameter per
		parton multiplicity and they are uncorrelated.
Madgraph Q^2 Scale $(t\bar{t}+b/b\bar{b}/c\bar{c})$	Yes	Madgraph Q^2 scale uncertainty for $t\bar{t}+b/b\bar{b}/c\bar{c}$.
Madgraph Q^2 Scale (V)	No	Varies by jet bin.
Extra $t\bar{t}$ +hf rate uncertainty	No	A 50% uncertainty in the rate of $t\bar{t}+b$, $t\bar{t}+b\bar{b}$, $t\bar{t}+c\bar{c}$.
au Energy Scale	Yes	Tau signal and background
au ID efficiency	Yes	Tau signal and background
au Jet Fake Rate	Yes	Tau signal and background
τ Electron Fake Rate	Yes	Tau signal and background

- Observed yields and distributions are compared to the expectation for a SM Higgs with m_H = 125.7
- Median expected combined UL:
 - in the absence of ttH signal:
 2.4 at 95% CL
 - with the SM ttH production:
 3.5 at 95% CL
- Observed UL is **6.6** at 95% CL mainly driven by the observed excess in the **ss μμ channel**

- Observed yields and distributions are compared to the expectation for a SM Higgs with $m_H = 125.7$
- The internal consistency of the 5 best-fit signal-strengths with a common value: 16%
- The fit to the combination yields: $\mu = 3.7^{+1.6}$ -1.4
- The combined μ is compatible with the SM Higgs boson prediction $\mu = 1$ at the 3% level
- (The signal extraction is repeated using just N_{iets}: the result is compatible with the nominal one but worse sensitivity)

Anatomy of the $\mu^{\pm}\mu^{\pm}$ excess

Nominal result

- The results in the different channels are fairly close to the SM Higgs predictions except in the $\mu^{\pm}\mu^{\pm}$ final state
 - Excess of events compared to the expectations, in the signal-like region of the final BDT discriminator

Process	Expected ± syst.		
ttH	2.7 ± 0.4		
ttW	8.2 ± 1.4		
ttZ/γ*	2.5 ± 0.5		
WZ	0.8 ± 0.9		
Others	1.4 ± 0.1		
Reducible	10.8 ± 4.8		
Data	41		

C. Botta (CERN)

Event kinematics

- CMS Preliminary CMS Preliminary √s = 8 TeV, L = 19.6 fb Vs = 8 TeV, L = 19.6 fb √s = 8 TeV, L = 19.6 fb CMS Preliminary 20 - Data Events Events Events 25 - Data Data ttH ttH ttH 18F 18F ttW ttW 16 ttZ/γ* 16 ttZ/γ* ttZ/γ* 20 Others Others Others 14 F Fakes 14 F Fakes Fakes 12 12 F 15 10 F 10F 8 8 10 6 6 4F 2 2 ٥Ē Data/Sim. Data/Sim. Data/Sim 3 3 0 90 20 40 50 60 70 80 90 Trailing lepton p_ [GeV] 30 50 100 250 300 2 2.5 40 150 200 0 0.5 1 1.5 3 3.5 H_⊤(II) [GeV] $\Delta R(II)$
- The **kinematic of the leptons** in the events does not show anomalies and is compatible with that of signal or ttV events

- CMS Preliminary s = 8 TeV, L = 19.6 fb CMS Preliminary √s = 8 TeV, L = 19.6 fb CMS Preliminary Vs = 8 TeV, L = 19.6 fb Events Events Events Data Data Data 20 ttH ttH 30 ttH ttW ttW ttW 18 ttZ/γ* ttZ/γ* ttZ/γ* 12 Others 25 16 Others Others Fakes Fakes Fakes 14 12 10 8 6 4 2 10 20 15 10 0 Data/Sim. Data/Sim. Data/Sim 3 3 0 .5 1 1.5 2 2.5 3 3.5 4 4.5 N(jet, p_⊤ > 25, CSV Medium) 500 1000 50 100 150 200 250 300 -0.5 0 0.5 H_T [GeV] E_{T}^{miss} [GeV]
- **Jets and E_T^{miss} are more** compatible with signal or ttV.
- The multeplicity of **b-tags** is also signal-like (while the reducible background has more often only 1 b-tag since the other b-jet is misidentified as a lepton)

Leptons

- The events in excess are characterized by having both leptons **very well isolated**.
- Scrutiny of the events also confirms that both leptons are well reconstructed in the tracker and muon system, and that their charge is correctly assigned
- The analysis was also repeated using a looser working point of the lepton MVA
 - the excess is visible only when both leptons pass the tight MVA wp
 - the rest of the sample is well described by the background model
- The analysis was also repeated with a cut-based muon selection. The result is compatible with the nominal one but the sensitivity is worse

Irreducible bkg check

• A more general fit is performed:

- leaving unconstrained the yields of ttW, ttZ, and reducible background (for fake e, μ separately)
- including additional control regions in the fit: trilepton events with one Z candidate (mostly ttZ), and dilepton events with 3 jets (ttW & red. bkg.)
- Results compatible with the nominal ones (but ~20% worse sensitivity)
- All backgrounds yields remain within 10 from their input value: no indication of issues with ttW & ttZ
 - results for ttH and ttW are correlated, all the others are well resolved

parameter	expected	observed
$\mu(ttH)$	$1.0^{-1.3}_{+1.5}$	$2.8^{-1.6}_{+1.8}$
$\mu(\text{ttW})$	$1.0\substack{-0.5\\+0.5}$	$1.4_{+0.6}^{-0.5}$
$\mu(ttZ)$	$1.0^{-0.3}_{+0.4}$	$1.1\substack{+0.3 \\ +0.4}$
μ (fake μ)	$1.0^{-0.3}_{+0.3}$	$0.7^{-0.3}_{+0.4}$
μ (fake e)	$1.0^{-0.3}_{+0.3}$	$0.9\substack{-0.3 \\ +0.3}$

Projections

Projection for LHC and HL-LHC

CMS Projections for 14 TeV, 300 & 3000 fb⁻¹

- Including bb, $\tau_h\tau_h$, $\gamma\gamma$ & multilept. the multilepton is new wrt the ECFA studies.
- Two scenarios:
 - 1. Pessimistic: keep systematics as in 8 TeV analysis
 - 2. Optimistic: assume experimental systematics improve as VL, theoretical systematics halved

	300	300 fb⁻¹		3000 fb-1	
	scenario 1	scenario 2	scenario 1	scenario 2	
Δy _t from gg	H 8%	6%	5%	3%	
Δy _t from tt	H 12%	9%	8%	4%	
M	vithout multilept	on	→ 10%	7%	

ttH leptonic analysis at Run II

- Current analysis designed for 20 fb⁻¹ at 8 TeV
 - inclusive selection to preserve signal efficiency
 - main focus to contain the reducible bkg (no serious attempt to separate ttV/ttH)
- The picture will change at 14 TeV and high luminosity
 - the ttH cross section will increase by a factor 5
 - 2.6 for gg and VBF
 - ttH is the Higgs production channel already interesting with the first year data
 - higher event yields will allow isolating categories of higher S/B events, or whose kinematic can be reconstructed