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strengths of the five channels and the SM expectation of one is about 8%. The compatibility between
the combined best-fit signal strength µ̂ and the best-fit signal strengths of the five channels is 13%. The
dependence of the combined value of µ̂ on the assumed mH has been investigated and is relatively weak:
changing the mass hypothesis between 124.5 and 126.5 GeV changes the value of µ̂ by about 4%.

Table 2: Summary of the best-fit values and uncertainties for the signal strength µ for the individual
channels and their combination at a Higgs boson mass of 125.5 GeV.

Higgs Boson Decay µ
(mH=125.5 GeV)

VH → Vbb −0.4 ± 1.0
H → ττ 0.8 ± 0.7

H → WW (∗) 1.0 ± 0.3
H → γγ 1.6 ± 0.3

H → ZZ(∗) 1.5 ± 0.4
Combined 1.30 ± 0.20
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Figure 1: Measurements of the signal strength parameter µ for mH =125.5 GeV for the individual chan-
nels and their combination.

In the SM, the production cross sections are completely fixed once mH is specified. The best-fit value
for the global signal strength factor µ does not give any direct information on the relative contributions
from different production modes. Furthermore, fixing the ratios of the production cross sections to the
ratios predicted by the SM may conceal tension between the data and the SM. Therefore, in addition to
the signal strength in different decay modes, the signal strengths of different Higgs production processes
contributing to the same final state are determined. Such a separation avoids model assumptions needed
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SM

New particle discovered in 
accordance with the SM scalar: 

ATLAS and CMS results 
“dancing” around the SM values...

The best LHC first-run legacy:



With a new SM particle, 
a new handle to look for indirect BSM effects

Where else should we look for?

So far, no sign of BSM in the h properties...

• pp→hW ? 
• pp→hh  double-Higgs production?
• h→Vff  E,p distributions? CP-violation?
• h→Zγ ?

...

An thorough model-independent analysis is needed

Main purpose of this talk



New-physics scale Λ seems to be heavier than MW.  
If so, we can obtain an effective Lagrangian by integrating out new-physics 

states and performing an expansion in derivatives and SM fields:

1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1

(assuming lepton & baryon number)

SM leading
deviations 

from the SM
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:  made of dimension-6 operators    e.g.

 particular subset of deformations of the SM
what are the predictions?
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Table 1: 14 CP-even operators made of SM bosons. The operators are grouped in 3 di↵erent

boxes corresponding to the 3 classes of operators defined in Eq. (2). Dashed lines separate

operators of di↵erent structure within a given class. There are, in addition, the 6 CP-odd

operators given in Eqs. (9)-(11).

where Y f
L,R are the fermion hypercharges and YH the Higgs hypercharge. In particular, we

could trade OB and OW with other operators:
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where, in the last expression, we have eliminated Or using Eq. (19).

For one family of fermions the set of operators that we use is collected in Tables 1 and 2.

We keep all operators of Eqs. (4)-(11), since they are the relevant ones for a well-motivated

class of BSM scenarios such as universal theories, with the exception of Or, that we eliminate

of our basis using Eq. (19). In Tables 1 and 2 there are 58 operators; adding the 6 bosonic CP-

odd ones in Eqs. (9)-(11) leads to a total of 64 operators. We still have 5 redundant operators

that once eliminated leave a total of 59 independent operators, in agreement with [9]. We

leave free the choice of which 5 operators to eliminate: e.g., the operators of Eq. (5) could be

eliminated by using Eq. (20) or, alternatively, we could trade 5 operators that contain fermions

by the operators in Eq. (5). We will use later this freedom in di↵erent ways depending on the

physics process studied. Other redundant operators are discussed in Appendix A.
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Too many new terms to say something?

1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1

not possible for



Two important lessons 
can be derived

for the h-scalar physics

   • Elias-Miro, Espinosa,  A.P.  & Masso:
                                arXiv:1308.1879

• A.P. & Riva         arXiv:1308.2803
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Potentially new BSM-effects in h physics 
could have been already tested in the vacuum

SM Scalar is the excitation around the EWSB vacuum: 

𝛟 = v+h

H†DµHf̄�µf

=
1

2v
⇥

Modifications in h→Zff  related to Z→ff      

vacuum

e.g.



How many possible BSM-effects in h physics 
are already constrained by electroweak precision data?



f=eL, eR, νL, uR, uL, dR, dL

All constrained by LEP1 at the per-mille level:
(assuming family-universality)

�(Z ! ll), Al
FB ,�Z ,�(Z ! hadrons), Rb, A

b
FB , A

c
FB

SM input parameters:
  α, MZ, MW



f=eL, eR, νL, uR, uL, dR, dL

All constrained by LEP1 at the per-mille level:
(assuming family-universality)

�(Z ! ll), Al
FB ,�Z ,�(Z ! hadrons), Rb, A

b
FB , A

c
FB

W ?

SM input parameters:
  α, MZ, MW



f=eL, eR, νL, uR, uL, dR, dL

All constrained by LEP1 at the per-mille level:
(assuming family-universality)

�(Z ! ll), Al
FB ,�Z ,�(Z ! hadrons), Rb, A

b
FB , A

c
FB

W

SM input parameters:
  α, MZ, MW

not independent contributions 
from dimension-six operators

(accidental custodial-symmetry)

Lucky us!



Z,𝛄
W

W

Constrained from:    e⁺e⁸→W⁺W⁸   (LEP2)

... LHC becoming also competitive

Triple Gauge Couplings (TGC)

Deviations in the ZWW coupling
& induce dipole-moments for the W

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
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µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and

gauge bosons, OWB = g0gH†�aHW a
µ⌫B

µ⌫ and OWW = g2|H|2W a
µ⌫W

µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c
3W ⇠ g2/g2⇤ and c

3G ⇠ g2s/g
2

⇤ respec-

tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to

begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄L
eHuR ,

Ou
R = (iH†

$
DµH)(ūR�

µuR) ,

Oq
L = (iH†

$
DµH)(Q̄L�

µQL) ,

O(3) q
L = (iH†�a

$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�
2

H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,

that when needed the Hermitian conjugate of a given operator is included in the analysis. In

the first class we have, in addition, the four-fermion operators:

Oq
LL = (Q̄L�

µQL)(Q̄L�
µQL) , O(8) q

LL = (Q̄L�
µTAQL)(Q̄L�

µTAQL) ,

Ou
LR = (Q̄L�

µQL)(ūR�
µuR) , O(8)u

LR = (Q̄L�
µTAQL)(ūR�

µTAuR) ,

Ou
RR = (ūR�

µuR)(ūR�
µuR) , (15)

5For CP-odd operators the identities are 4OH eB + OB eB + OW eB = 0 and 4O
HfW + O

WfW + OW eB = 0.

5

from e.g.



Z,𝛄
W

W

... LHC becoming also competitive

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.9 1 1.1
g1Z

h a

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0.9 0.95 1 1.05 1.1
g1Z

g a

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

-0.1 0 0.1
ha

g a

95% c.l.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.9 1 1.1
g1Z

h a

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0.9 0.95 1 1.05 1.1
g1Z

g a

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

-0.1 0 0.1
ha

g a

95% c.l.

68% c.l.

2d fit result

LEP charged TGC Combination 2003

LEP Preliminary

per-cent bounds

Triple Gauge Couplings (TGC)

Constrained from:    e⁺e⁸→W⁺W⁸   (LEP2)

Deviations in the ZWW coupling
& induce dipole-moments for the W

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and

gauge bosons, OWB = g0gH†�aHW a
µ⌫B

µ⌫ and OWW = g2|H|2W a
µ⌫W

µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c
3W ⇠ g2/g2⇤ and c

3G ⇠ g2s/g
2

⇤ respec-

tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to

begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄L
eHuR ,

Ou
R = (iH†

$
DµH)(ūR�
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2d fit result

LEP charged TGC Combination 2003

LEP Preliminary

Triple Gauge Couplings (TGC)

Constrained from:    e⁺e⁸→W⁺W⁸   (LEP2)

Deviations in the ZWW coupling
& induce dipole-moments for the W

No new effects 
in quartic-gauge 

couplings!
(accidental symmetries in 

dim-6 operators)

per-cent bounds

In the third class of operators, Oi3 , we have the CP-even operators
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Aµ⌫ , (6)
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µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1
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g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA
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eGAµ⌫ , (9)
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c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and

gauge bosons, OWB = g0gH†�aHW a
µ⌫B

µ⌫ and OWW = g2|H|2W a
µ⌫W

µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c
3W ⇠ g2/g2⇤ and c

3G ⇠ g2s/g
2

⇤ respec-

tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to

begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄L
eHuR ,

Ou
R = (iH†

$
DµH)(ūR�

µuR) ,

Oq
L = (iH†

$
DµH)(Q̄L�

µQL) ,

O(3) q
L = (iH†�a

$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�
2

H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,

that when needed the Hermitian conjugate of a given operator is included in the analysis. In

the first class we have, in addition, the four-fermion operators:

Oq
LL = (Q̄L�

µQL)(Q̄L�
µQL) , O(8) q

LL = (Q̄L�
µTAQL)(Q̄L�

µTAQL) ,

Ou
LR = (Q̄L�

µQL)(ūR�
µuR) , O(8)u

LR = (Q̄L�
µTAQL)(ūR�

µTAuR) ,

Ou
RR = (ūR�

µuR)(ūR�
µuR) , (15)

5For CP-odd operators the identities are 4OH eB + OB eB + OW eB = 0 and 4O
HfW + O

WfW + OW eB = 0.
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All BSM-effects leading to EWSB 
have already been tested

in EWPT (~LEP1/Tevatron) and TGC (~LEP2) !

These BSM-effects are too small to be seen
in Higgs physics !

First lesson:



II



What BSM-effects scalar physics can be probing?

e.g.

G G

1

g2s
G2

µ⌫ +
|H|2

⇤2
G2

µ⌫ !
✓

1

g2s
+

v2

⇤2

◆
G2

µ⌫

Effects that on the vacuum, 𝛟 = v, give only 
a redefinition of the SM couplings:

⨂ ⨂

G G
Not physical!

But can affect h physics:

G G

⨂h
affects GG →h!



How many of these effects can we have? 
 As many as parameters in the SM: 8

(assuming CP-conservation)
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(f=t,b,𝝉)

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and

gauge bosons, OWB = g0gH†�aHW a
µ⌫B

µ⌫ and OWW = g2|H|2W a
µ⌫W

µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c
3W ⇠ g2/g2⇤ and c

3G ⇠ g2s/g
2

⇤ respec-

tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to

begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄L
eHuR ,

Ou
R = (iH†

$
DµH)(ūR�

µuR) ,

Oq
L = (iH†

$
DµH)(Q̄L�

µQL) ,

O(3) q
L = (iH†�a

$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�
2

H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,

that when needed the Hermitian conjugate of a given operator is included in the analysis. In

the first class we have, in addition, the four-fermion operators:

Oq
LL = (Q̄L�

µQL)(Q̄L�
µQL) , O(8) q

LL = (Q̄L�
µTAQL)(Q̄L�

µTAQL) ,

Ou
LR = (Q̄L�

µQL)(ūR�
µuR) , O(8)u

LR = (Q̄L�
µTAQL)(ūR�

µTAuR) ,

Ou
RR = (ūR�

µuR)(ūR�
µuR) , (15)

5For CP-odd operators the identities are 4OH eB + OB eB + OW eB = 0 and 4O
HfW + O

WfW + OW eB = 0.
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How many of these effects can we have? 
 As many as parameters in the SM: 8

(assuming CP-conservation)

g

g0

mW

gs

mh

mf



(f=t,b,𝝉)

h→bb,𝝉𝝉

GG→h

h→γγ 

h→VV*

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and

gauge bosons, OWB = g0gH†�aHW a
µ⌫B

µ⌫ and OWW = g2|H|2W a
µ⌫W

µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c
3W ⇠ g2/g2⇤ and c

3G ⇠ g2s/g
2

⇤ respec-

tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to
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$
DµH)(ūR�
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L = (iH†

$
DµH)(Q̄L�

µQL) ,

O(3) q
L = (iH†�a

$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�
2

H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,

that when needed the Hermitian conjugate of a given operator is included in the analysis. In

the first class we have, in addition, the four-fermion operators:

Oq
LL = (Q̄L�

µQL)(Q̄L�
µQL) , O(8) q

LL = (Q̄L�
µTAQL)(Q̄L�

µTAQL) ,

Ou
LR = (Q̄L�

µQL)(ūR�
µuR) , O(8)u

LR = (Q̄L�
µTAQL)(ūR�

µTAuR) ,

Ou
RR = (ūR�

µuR)(ūR�
µuR) , (15)

5For CP-odd operators the identities are 4OH eB + OB eB + OW eB = 0 and 4O
HfW + O

WfW + OW eB = 0.
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In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)
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µ⌫B

µ⌫ and OWW = g2|H|2W a
µ⌫W

µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5
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4
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1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c
3W ⇠ g2/g2⇤ and c

3G ⇠ g2s/g
2

⇤ respec-

tively.
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5For CP-odd operators the identities are 4OH eB + OB eB + OW eB = 0 and 4O
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WfW + OW eB = 0.
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How many of these effects can we have? 
 As many as parameters in the SM: 8

(assuming CP-conservation)
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strengths of the five channels and the SM expectation of one is about 8%. The compatibility between
the combined best-fit signal strength µ̂ and the best-fit signal strengths of the five channels is 13%. The
dependence of the combined value of µ̂ on the assumed mH has been investigated and is relatively weak:
changing the mass hypothesis between 124.5 and 126.5 GeV changes the value of µ̂ by about 4%.

Table 2: Summary of the best-fit values and uncertainties for the signal strength µ for the individual
channels and their combination at a Higgs boson mass of 125.5 GeV.

Higgs Boson Decay µ
(mH=125.5 GeV)

VH → Vbb −0.4 ± 1.0
H → ττ 0.8 ± 0.7

H → WW (∗) 1.0 ± 0.3
H → γγ 1.6 ± 0.3

H → ZZ(∗) 1.5 ± 0.4
Combined 1.30 ± 0.20

)µSignal strength (
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Figure 1: Measurements of the signal strength parameter µ for mH =125.5 GeV for the individual chan-
nels and their combination.

In the SM, the production cross sections are completely fixed once mH is specified. The best-fit value
for the global signal strength factor µ does not give any direct information on the relative contributions
from different production modes. Furthermore, fixing the ratios of the production cross sections to the
ratios predicted by the SM may conceal tension between the data and the SM. Therefore, in addition to
the signal strength in different decay modes, the signal strengths of different Higgs production processes
contributing to the same final state are determined. Such a separation avoids model assumptions needed

5

All were new BSM effects,

probed for the first time

 at the LHC !



(f=t,b,𝝉)

h→bb,𝝉𝝉

GG→h

h→γγ 

h→VV*

Affects h³: 
It can be measured 
in the far future by

GG→hh

GG→tth

h→Zγ 

htt deviation

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and

gauge bosons, OWB = g0gH†�aHW a
µ⌫B

µ⌫ and OWW = g2|H|2W a
µ⌫W

µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c
3W ⇠ g2/g2⇤ and c

3G ⇠ g2s/g
2

⇤ respec-

tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to

begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄L
eHuR ,

Ou
R = (iH†

$
DµH)(ūR�

µuR) ,

Oq
L = (iH†

$
DµH)(Q̄L�

µQL) ,

O(3) q
L = (iH†�a

$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�
2

H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,

that when needed the Hermitian conjugate of a given operator is included in the analysis. In

the first class we have, in addition, the four-fermion operators:

Oq
LL = (Q̄L�

µQL)(Q̄L�
µQL) , O(8) q

LL = (Q̄L�
µTAQL)(Q̄L�

µTAQL) ,

Ou
LR = (Q̄L�

µQL)(ūR�
µuR) , O(8)u

LR = (Q̄L�
µTAQL)(ūR�

µTAuR) ,

Ou
RR = (ūR�

µuR)(ūR�
µuR) , (15)

5For CP-odd operators the identities are 4OH eB + OB eB + OW eB = 0 and 4O
HfW + O

WfW + OW eB = 0.
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|H|2|DµH|2

|H|6

|H|2f̄LHfR + h.c.

How many of these effects can we have? 
 As many as parameters in the SM: 8

(assuming CP-conservation)

g

g0

mW

gs

mh

mf

(custodial invariant)



Experimental bound on h→Zγ 
(10 x the SM)

 (GeV)Hm
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CMS Preliminary
-1 = 7 TeV L = 5.0 fbs

-1 = 8 TeV L = 19.6 fbs
Electron + muon channels

... last hope for finding O(1) deviations ?

small in the SM since it comes at one-loop

(possibility in composite Higgs models)



Where deviations on 
 SM-scalar physics 

should not be found?



➥ No large custodial-breaking effects allowed
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Where deviations on 
 SM-scalar physics 

should not be found?



Contrary to certain literature, no relevant 
information from h physics to TGC
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Predictions on h→Wff,Zff form-factors:

In principle, many new parameters to be 
measured in momentum distributions

(assuming mf=0 and CP-conservation)

interactions hV f̄f . Apart from the contributions given in Eq. (29), we have

�LhV V = 2
h

v

h
ĉW

�
W�

µ Dµ⌫W+
⌫ + h.c.

�
+ ĉZ ZµDµ⌫Z⌫ + (ĉW � ĉB)t✓W ZµDµ⌫A⌫

i

� 2
h

v

h
cWW W+µ⌫W�

µ⌫ + cZZ Zµ⌫Zµ⌫

i
, (35)

�LhV ff =
h

v

X

f=fL,fR

h
ghWff 0 Wµf̄�

µf 0 + ghZff Zµf̄�
µf

i
, (36)

where Dµ⌫ = @µ@⌫ �2⌘µ⌫ and

ĉW = cW + HW , ĉZ = ĉW + ĉBt
2
✓W

, ĉB = cB + HB , (37)

cWW = HW , cZZ =
1

2
(HW + HBt

2
✓W

)� 2
s4✓W
c2✓W

BB . (38)

Eq. (36) gives the contributions to the contact hV f̄f vertices that is found to be correlated

with those to the V f̄f vertices:

ghZff =
2

v
�gfZ and ghWff 0 =

2

v
�gfW , (39)

where �gfZ and �gfW are given respectively in Eqs. (57) and (65) of Appendix A.

The CP-even part of the total amplitude for the process h ! V f̄f can be written as 4

M(h ! V Jf ) = (
p
2GF )

1/2✏⇤µ(q) JV ⌫
f (p)

⇥
AV

f ⌘µ⌫ + BV
f (p · q ⌘µ⌫ � qµ p⌫)

⇤
, (40)

where q and p are respectively the total 4-momentum of V and the fermion pair in the JV
f

current (Jµ
fL,R

= f̄L,R�µfL,R), ✏µ is the polarization 4-vector of V , and we have defined

AV
f = aVf + baVf

p2 +M2
V

p2 �M2
V

, BV
f = bVf

1

p2 �M2
V

+bbVf
1

p2
(bbVf = 0 for V = W ) . (41)

The above coe�cients are in one-to-one correspondence with the coe�cients of the La-

grangians Eqs. (31), (35) and (36):

aZf = �gfZ(1 + �ghZZ) + 2eQf (ĉW � ĉB)t✓W + v ghZff , aWf = �gfW (1 + �ghWW ) + v ghWff 0 ,

baZf = gfZ(1 + �ghZZ + 2ĉZ) , baWf = gfW (1 + �ghWW + 2ĉW ) ,

bZf = 8gfZcZZ , bWf = 4gfW cWW ,

bbZf = �8eQf t✓WZ� , (42)

where we have not included the universal contribution from cH that drops when calculating

BR. All 7 quantities in Eq. (42) can be related with other experiments and therefore can be

constrained. Indeed, the terms proportional to �ghV V of Eq. (32) and the universal part of

4 We neglect terms proportional to the light fermion masses, see however Ref. [37].
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3.1 New physics e↵ects in h ! V f̄f

The decays h ! V f̄f (V = W,Z) are potentially much richer than two-body decays, since

the di↵erent di↵erential partial-widths can give in principle extra information on BSM con-

tributions [7, 34–39]. Nevertheless, as we will show, most of the new information that we

could extract from measuring the various di↵erential partial-widths of the decay h ! V f̄f is

already constrained by other experiments.

Contributions to h ! V f̄f can come from corrections to hV V vertices and contact-

interactions hV f̄f . Apart from the contributions given in Eq. (31), we have

�LhV V = 2
h

v

h
ĉW

�
W�

µ Dµ⌫W+
⌫ + h.c.

�
+ ĉZ ZµDµ⌫Z⌫ + (ĉW � ĉB)t✓W ZµDµ⌫A⌫

i

� 2
h

v

h
cWW W+µ⌫W�

µ⌫ + cZZ Zµ⌫Zµ⌫

i
, (37)
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h

v

X

f=fL,fR
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ghWff 0 Wµf̄�

µf 0 + ghZff Zµf̄�
µf

i
, (38)

where Dµ⌫ = @µ@⌫ �2⌘µ⌫ and

ĉW = cW + HW , ĉZ = ĉW + ĉBt
2
✓W

, ĉB = cB + HB , (39)

cWW = HW , cZZ =
1

2
(HW + HBt

2
✓W

)� 2
s4✓W
c2✓W

BB . (40)

Eq. (38) gives the contributions to the contact hV f̄f vertices that is found to be correlated

with those to the V f̄f vertices:

ghZff =
2

v
�gfZ and ghWff 0 =

2

v
�gfW , (41)

where �gfZ and �gfW are given respectively in Eqs. (60) and (68) of Appendix A.

The CP-even part of the total amplitude for the process h ! V f̄f can be written as 4

M(h ! V Jf ) = (
p
2GF )

1/2✏⇤µ(q) JV ⌫
f (p)

⇥
AV

f ⌘µ⌫ + BV
f (p · q ⌘µ⌫ � pµ q⌫)

⇤
, (42)

where q and p are respectively the total 4-momentum of V and the fermion pair in the JV
f

current (Jµ
fL,R

= f̄L,R�µfL,R), ✏µ is the polarization 4-vector of V , and we have defined

AV
f = aVf + baVf

p2 +m2
V

p2 �m2
V

, BV
f = bVf

1

p2 �m2
V

+bbVf
1

p2
(bbVf = 0 for V = W ) . (43)

4We neglect terms proportional to the light fermion masses (see however Ref. [38]). Also we omit a term
proportional to CW

f ✏µ⌫↵� p
↵ q� that could be CP-even if CW

f is pure imaginary. None of the Wilson coe�cients
of the dimension-6 operators contribute to this term at tree-level.
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(assuming no new-physics in h→Zγ)

using EWPT & TGC

but already constrained from EWPT and TGC:

1) No large deviations from universality 
in h→Wff,Zff allowed

2)

small deviations
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Conclusions
• Where could BSM physics hide in the SM-scalar sector?



Conclusions

• Model-independent analysis of new-effects 
   on SM-scalar physics implies (assuming Λ>MW):

• h→γγ,  GG→h,  h→ff, h→VV*  (but already tested)

No new BSM-effects expected in 

BSM-effects can hide in

• h→Zff,Wff  (small custodial breaking effect 
                       & small deviations in momentum distributions)

• Where could BSM physics hide in the SM-scalar sector?

I wish I knew

• GG→htt,  h→Zγ  (to be tested at the LHC next run)



Conclusions

• Model-independent analysis of new-effects 
   on SM-scalar physics implies (assuming Λ>MW):

• h→γγ,  GG→h,  h→ff, h→VV*  (but already tested)

No new BSM-effects expected in 

BSM-effects can hide in

• Where could BSM physics hide in the SM-scalar sector?

I wish I knew

• GG→htt,  h→Zγ  (to be tested at the LHC next run)

If discovered here, 
        we could have been missing light new-physics !

• h→Zff,Wff  (small custodial breaking effect 
                       & small deviations in momentum distributions)



Backup



Backup
(are you really so interested that you want to see more slides?)



of SU(2)

 not possible 
         at order h² ∈ H†�aH 2 3

W3µJ
µ
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Composite 
Higgs

h→Zγ

PGB Higgs: 
Invariance under

H→H+c
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DµH)(ūR�µuR) Od

R = (iH†
$
DµH)(d̄R�µdR) Oe

R = (iH†
$
DµH)(ēR�µeR)
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MSSM Higgs

at the loop-level


