Exotic rotations and seniority isomers in Nd nuclei

C.M. Petrache – University Paris-Sud & CSNSM Orsay (Centre de Sciences Nucléaires et Sciences de la Matière)

1. Exotic rotations - GASP, Legnaro (Italy)

- Euroball, Strasbourg (France)
- Jurogam+RITU, Jyvaskyla (Finland)

2. Seniority isomers - Jurogam+RITU, Jyvaskyla (Finland)

CNS calculations for ¹³⁸Nd : high spins !

I. Ragnarsson

CNS calculations for ¹³⁸Nd

Stable triaxiality: ~ +30° for N<82

84 (2011); 86 (2012); 87 (2013); 88 (2013); 88 (2013)R

Triaxiality at high spins

Chiral Geometry in Nuclei

Mutually orthogonal coupling of three angular momenta in odd-odd nuclei

Wobbling mode

$$E(I, n_{\text{wobb}}) = \frac{I(I+1)}{2\mathcal{J}_x} + \hbar\omega_{\text{wobb}} \left(n_{\text{wobb}} + \frac{1}{2}\right)$$

$$\hbar\omega_{\text{wobb}} = \hbar\omega_{\text{rot}} \sqrt{\frac{(\mathcal{J}_x - \mathcal{J}_y)(\mathcal{J}_x - \mathcal{J}_z)}{\mathcal{J}_y \mathcal{J}_z}}$$
$$\hbar\omega_{\text{rot}} = \frac{I}{\mathcal{J}_x}$$

¹³⁸Nd – 21 bands at medium spins !

C. Petrache et al., PR C86, 044321 (2012)

FIG. 18. (Color online) Calculated excitation energies of the RPA solutions built on the aligned $\nu 10$ configuration as functions of the rotational frequency in ¹³⁸Nd. Among them, the collective solution is emphasized by blue squares. Note that noncollective solutions are occasionally overlooked in the present algorithm, which however does not have any consequences for the discussion. The green dotted curve is the unperturbed πGI state.

Configuration assignments for the 21 bands at low and medium spin of ¹³⁸Nd

TABLE IV. Configuration assignments to the low- and medium-spin bands of ¹³⁸Nd in terms of particle-hole excitations with respect to the $\pi ABEF = \pi 10$ reference configuration assigned to band L1 or the corresponding quasiproton vacuum for small finite pairing. The rotation axis is also indicated, which can be tilted (TAC) or parallel to a principal axis (PAC) of the intrinsic reference system of the nucleus. In the case of PAC, 1 and s indicate the long and short axes, respectively.

Band	Intensity (%)	Configuration	Rotation type	States	Comments
g band	100	$\pi 0 \otimes \nu 0$		2+-8+	
γ band		y band	\frown	2+-4+	Decays to g band
NI	39	$\pi 0 \otimes \nu B^{-1} H \nu 10$	(PAC-I)	515-	Decays to g band
N2	14	$\pi B^{-1}H\pi 10 \otimes \nu 0$	PAC	82-16-	Decays to N1, N3, 8-
N3	2	$\pi B^{-1}G\pi 10 \otimes \nu 0$	PAC-s	92-15-	Decays to N2, N4, 81
N4	89	$\pi E^{-1} \bar{A} \pi 10 \otimes \nu 0$	PAC-s	$7^{-}_{2} - 15^{-}$	Decays to N1, N3, GSB
81	17	$\pi F^{-1} \bar{A} \pi 10 \otimes \nu 0$	PAC-s	81,82	Decays to N1
LI	64	$\pi 10 \otimes \nu 0$	PAC-s	$10^{+} - 20^{+}$	Decays to N2, N3
L2	6	$\pi F^{-1}H\pi 10 \otimes v0$ or $\pi E^{\dagger}F^{\dagger}\pi 10 \otimes v0$	PAC-s	14+, 16+, 18+	Decays to L1
L3	2	$\pi E^{-1}G\pi 10 \otimes v0$ or $\pi F^{\dagger}H\pi 10 \otimes v0$	PAC-s	$14^{+}-20^{+}$	Decays to L1, L4
L4	2	$\pi E^{-1}H\pi 10 \otimes \nu 0$	PAC-s	13+, 15+	Decays to L1, L3
1.5	8	$\pi F^{-1}C\pi 10 \otimes v0$ or $\pi 10 \otimes vh^2$	PACK	15(-)-23(-)	Decays to L1, D4
L6	24	π0⊗v10	PAC-1	$10^{+} - 14^{+}$	Band head is isomeric
L7	11	wobbling or $\pi 0 \otimes \nu F^{-1}G\nu 10$ or $\pi GI\pi 0 \otimes \nu 10$	PAC-1	$13^{+}-17^{+}$	Decays to L6
L8	2	$\pi 0 \otimes \nu E^{-1}G\nu 10$ or $\pi F^{\dagger}I\pi 0 \otimes \nu 10$	PAC-I	16+-22+	Decays to L7
D1	21	$\pi F^{-1} \overline{A} \pi 10 \otimes \nu 10$	TAC	1321-	Decays to N4, L8
D2	2	$\pi E^{-1} \tilde{A} \pi 10 \otimes v 10$ or chiral	TAC	1519-	Decays to D1
D3	1	$\pi B^{-1}G\pi 10 \otimes \nu 10$	TAC	1418-	Decays to nonvrast $\pi = -$
D4	5	$\pi F^{-1}I\pi 10 \otimes v0$ or $\pi F^{-1}\overline{A} \otimes vb^{-1}g$	TAC	$10^{+} - 17^{+}$	Decays to L1 and GSB
D5	1	$\pi 10 \otimes \nu 10$	TAC	16(+)-23(+)	Decays to D4 and $\pi = -$
D6	4	$\pi F^{-1}I\pi 10 \otimes v 10 \text{ or } \pi E^{-1}H \otimes v 10$	TAC	$19^{(+)} - (25^+)$	Decays to L7
D7	3	$\pi F^{-1}C\pi 10 \otimes \nu 10$	TAC	22 ⁽⁻⁾ -(26 ⁻)	Decays to D1
D8	2	$\pi E^{-1}C\pi 10 \otimes \nu 10$	TAC	$24^{(-)}-(27^{-})$	Decays to D7

Switch of rotation from short to intermediate axis at high spin in ¹³⁸Nd

C. Petrache et al., PRC(R) 2013

Existence of triaxial shapes with $\gamma > 0^{\circ}$ and $\gamma < 0^{\circ}$

CNS calculations for ¹³⁸Nd – I. Ragnarsson

Calculated potential energy surfaces in the (ϵ_2, γ) -plane, illustrating the shape change around I = 35 for the [3,3(10)] configuration assigned to the T1 band. The contour line separation is 0.25 MeV.

C. Petrache et al., PRC(R) 2013

SCTAC calculations for ¹⁵⁸Er

minimum that represents a TSD band. We have thus clarified a long-standing question pertaining to the nature of positive- and negative- γ bands associated with the same intrinsic shape in the PAC approach: the rotation of a well-deformed, slightly triaxial configuration can be either about a short or medium axis, but not about both.

Y. Shi et al., PRL 108, 092501 (2012)

Existence of stable triaxial shape at high spins in Lanthanides with N < 82 : ¹⁴⁰Nd

CNS calculations for ¹⁴⁰Nd for $(I,\pi)=(even,+)$ and for the [82,22(20)] configuration of band Q1

Comparison CNS - experiment for ¹⁴⁰Nd

Seniority isomers in nuclei around the N=82 shell closure

Why study of isomers ?

Constraints for matrix elements of effective residual interactions used in the shell-model calculations

Improve the predictive power of effective interactions for neutron-rich nuclei

JUROGAM+RITU at Jyväskylä (48Ca + 96Zr)

Prompt coincidence spectra between transitions above the 27⁻ isomer

Collaboration

CSNSN Orsay – C.M. Petrache, R. Leguillon, T. Zerrouki, A. Astier, T. Konstantinopoulos **IPHC Strasbourg – D. Curien IPN Lyon** – N. Redon, O. Stezowski, D. Guinet, A. Vancrayenest LTH Lund – I. Ragnarsson Notre Dame University – S. Frauendorf Fukuoka University – M. Matsuzaki University of Jyväskylä – P. Greenlees et al. University of Padova – S. Lunardi et al.