Architecture and components
of ARC

Outline of the lecture

* Overview and key concepts of ARC
* ARC components and functionalities
 Computational jobs and environments

Components

* Front-end to computing resources: the
ARC Compute Element (CE)

— CE is a set of services and modules
* Authorisation and access control

Job handling

Job files handling (input/output data)

Information handling

Accounting

* Resource indexing server (EGIIS)

— A lightweight LDAP-based server, probably to be replaced
by a 379 party one (EMIR)

* Client tools
— Built upon libraries, some shared with the CE

High-level ARC Grid architecture

ARC CE

""" > Registration

=== Query

==» Query and job actions \ 1
= Data transfer

Storage

ARC CE key concept: optimized for data-
intensive jobs

| Node
| Node

Q Other CE

| Storage

/

All data transfer is ARC CE is a very
done by the CE itself complex service

Allows to cache Is built of many
frequently used files individual services and

tools

Minimizes bandwidth
- Requires high-end
Maximizes WN usage storage for cache
efficiency

ARC CE components on a (PBS) cluster

© A-REX

processes

Interfaced to a
number of batch
systems

— SLURM, SGE, PBS, LSF,
LL, Condor

ARC CE is a uniform
interface: batch
system specifics are
not exposed

No ARC component is
installed on worker
nodes

— No need, because the
CE handles transfers

Registration

/, Q e Information Registration

Process periodically sends

pre-configured

H AREX information to one or
more pre-configured

information registries

— Service type (cluster in this
case)

— Service contact details
(contact string, port etc)
* Currently all such data
communicated vi

Q00U

Information publishing

Q * A-REX periodically launches
information providers which:

— Collect all details defined by
relevant information schemas,

such as
 Hardware details

* LRMS details

* Auvailable application software
(RTE)

* Authorised users (DNs)
* etc

— Create formatted output ready to
be served on request

— Populate ARIS databases

e ARIS serves informatio
arcinfo queried via LDAF

')

»
. -
e)

.
.

Job submission

e C(Client tool must:

£ |

Query information

Match it to the job
description document

Select the best site

Convert to a server
document (deterministic)

Upload all the files

 A-REX discovers uploaded
job files and launches job
processing

e Currently, information
and upload use different

/ .o protocols
— WS is needed for better
J consistency
e All steps require

authorisation

@

]

== A-REX

Handling file transfers

Storage

Jobs won’t start before all
input files are present

Input files provided by the
user are uploaded by the
client tool

— normally, cached

External files are
downloaded by DTR when
triggered by A-REX

— also cached by default

All inputs are copied or
linked to the session
directory

Output files are uploaded
by DTR to external
storage if requested

Job submission to the batch queue

* Key component:
batch “back-ends”

— Encapsulate specific
properties of different
=8 A-REX batch systems and
map them to generic
functionalities

* A-REX handles the job
life cycle

— Sends them to the
batch queue via back-
ends

— Monitors status

— Triggers data
movement

] ’ — Authorisation

Job handling by A-REX

Accepted the job has been submitted to the CE but hasn’t been ——— S
processed yet I T
) .) PREPARING |[Foiiissor cineal roguony
Preparing input data are being gathered = o
Submitting job is being submitted to the LRMS S”B"”I““’G E—
Executing (INLRMS) job is queued or being executed in the LRMS INLRMS CANCELING |—»
4 T PENDING
Killing (Canceling) job is being canceled i ntsming le—tfiilice rocessing
Finishing output data are being processed (even if there was a 2 '
faI|UI’E) FINISHED
Finished job is in this state when either it finished successfully DELETED

or there was an error during one of the earlier steps

Deleted after specified amount of days the job gets deleted

and only minimal information is kept about it

=
=
-

Accounting

s

s

* JURA harvests job
information and
submits it to an

external accountin

service

COMPUTATIONAL JOBS AND
ENVIRONMENTS

Client interprets job description

e 37 attributes to find best matching resource
* Job description language: xRSL, JSDL or JDL, but internally is ADL-like

Job attribute Eample

/APPS/HEP/ATLAS-20.1.0.1

Application environments JENV/GLITE

/ENV/FULLNODE
Main executable (binary or script) Findhiggs.py
Arguments of executable -i input.root -o output.root
Input files srm://srm.infn.it/atlas/2012/filel.root
Output files srm://srm.ndgf.org/atlas/ulf/higgs.root
Number of slots per job* 36
Queue name (bad practice) mpi_jobs
Time (or benchmark), memory, disk numbers (or benchmark name, e.g. HS06)
Standard input/output/error stdout.txt

and many others

Runtime Environment (RTE) concept

Requested RTE script is called by A-REX
3 times:

* Application environment is
formalised as “Runtime

: PR First call with argument "0" is made
Environment” (similar concepts before the the batch job submission

exist in other CEs) script is written on the frontend

* Runtime Environment can
encapsulate not just application
software, but also:

— Batch system peculiarities

— Hardware aspects
— Can even emulate glLite WN

It is just a shell script

gated man.uarlly R Third "clean-up" call is made with

argument "2" after the user specified

executable has returned on the node.

RTE example: how to make jobs
to use 4 cores per node (for PBS)

: RTE script Bad way: special queue
user@host# cat RESERVE_4_CORES user@host# cat arc.conf
#!/bin/sh .
case "S1" in [queue/mpi_jobs]
0
export joboption_nodeproperty_0="ppn=4" queue_node_string="ppn=4"
1)

ﬁNOthing to do Add line to job description file:

2) (queue=mpi_jobs)
Nothing to do
Z « And soon, introduce a new queue
e for every imaginable configuration

esac

*)

 Add line to job description file:
(runtimeenvironment=
"RESERVE_4 CORES")

* As many RTE scripts as needed

RTE benefits

In practice is the only way to make parallel/multi-core applications work
in heterogeneous clusters

No need to transfer executable, loader or libraries

Possibility to build clusters which allow execution of specified
applications only

Better application performance with architecture specific optimizations

Initialization of environment variables and paths, i.e. providing standard
environment for executables submitted by user

Version management

Logistical problem:

— Who/how keeps track of all RTEs?
* Currently, just a Web page

Summary

 ARC CE is a complex modular service

— The modules usually have no stand-alone meaning

and can not be used with other services (except
for perhaps DTR)

* ARC client tools perform simple actions, but
have very complex internal logic

* Improvements of old components and
introduction of new ones (especially on the
client side) is a constant work in progress

