Sur la route de l'îlot de stabilité

JRJC 08

Les noyaux super-lourds

Au delà de Z=104 (Rutherfordium) Barrière de fission inférieure à 0,5 MeV 250≤A≤400

beam

micleus

rotation

10-13

JRJC 08

target

mcleu

Motivations : Forme et états collectifs ? Structure ? Recherche de l'îlot de stabilité super-lourd : prochains nombres magiques

Variation des prédictions selon les modèles:

	Z	N
W.S.	114	184
F.R.D.M.	114	178
H.F.B.	126	184
R.M.F.	120	172

Recherche d'un passage vers l'îlot de stabilité super-lourd

JRJC 08

J. Piot

Sur la route de l'îlot de stabilité

Techniques de détection des noyaux très lourds et super-lourds

Deux méthodes :

Décroissance Alpha (ex: Gabriela@Dubna)

Spectroscopie α et identification de nouveaux noyaux au PF Forte intensité de faisceau (~IpµA) Informations sur les états fondamentaux et isomériques

Ajout de détecteurs HPGe pour la spectroscopie γ des noyaux filles

Spectroscopie prompte (ex: JUROGAM@Jyväskylä)

Spectroscopie γ et e- prompte Spectroscopie α, γ et e- au plan focal Triggerless, marquage temporel de tous les événements Détection des excitations collectives (rotation, vibration) Fort taux de comptage et fort bruit de fond à la cible

JRJC 08

Les limites de détection

La spectroscopie gamma requiert une forte statistique au niveau de la cible

- La section efficace diminue avec la masse A
- L'électronique analogique équipant les HPGe actuels supporte au plus 20kHz
- Importance de certains couples cible-faisceau pour la production des super-lourds (Ti, Cr)

La passage au noyaux au-delà du Nobelium (Z=102) demande de nouvelles solutions techniques

Le Rutherfordium 256

Premier noyau super-lourd (Z=104) → Premières traces d'un changement de réaction à la fission

- Stabilisation par des croisements d'orbitales
 → Présence d'orbitales intruses fermant des gaps autour niveau de Fermi
- Orbitales de grand J
- Etat déformé stable
- Présence d'une bande de rotation étendue
- Stabilité du noyau jusqu'à haut spin

Le Rutherfordium 256

J. Dragojević et al., PRC 78, 024605

Mesures attendues

- Etude du moment d'inertie en fonction
- Evolution de l'appariement en fonction de la rotation
- Observation éventuelle d'états de haut K (isomères)

Expérience

- ⁵⁰Ti (²⁰⁸Pb,2n) ²⁵⁶Rf
- Section efficace comprise entre 12nb et 20nb
- Expérience prévue à Jyväskylä sur JUROGAM II, courant 2009
- Nouveau faisceau de Titane 50
- Electronique digitale

Traitement numérique du signal : les cartes TNT2

- Traitement en pipeline
- Faible temps mort (~50ns)
- Retour rapide à la ligne de base
- Mesure sur la fin du plateau du trapèze : pas de déficit balistique

Meilleur taux de comptage (jusqu'à 100kHz)

J. Piot

Sur la route de l'îlot de stabilité

Comparaison Numérique-analogique sur JUROGAM

- Acquisition de données en parallèle sur les systèmes analogique et numérique lors de l'expérience
- Mesures triggerless avec marquage temporel (timestamp) pour chaque événement
- Association des événements dans chacun des jeux de données par coïncidence en temps et en énergie

Comparaison Numérique-analogique sur JUROGAM

Identification γ-analogique/γ-numérique 88% de corrélation Statistique numérique 36% plus importante

JRJC 08

Comparaison Numérique-analogique sur JUROGAM

Résolutions en énergie en fonction du taux de comptage pour les cartes TNT2

Taux de comptage jusqu'à 100kHz

Pertes sur la Résolution à haut taux de comptage

Possibilité d'étudier des noyaux avec une section efficace très faible (jusqu'à 1nb ?)

C. Dritsa, O. Dorvaux, IPHC 2005

S³: Super Séparateur Spectromètre pour SPIRAL2

Séparation en masse et en impulsion Spectroscopie au plan focal :α, γ, e-Array de Germaniums autour du plan focal

- → Poursuite de la spectroscopie des super-lourds
- ► Etude de la région du ¹⁰⁰Sn
- ➡ Coulex

HPGe, quelle géométrie ?

Perspectives

- Fin de l'analyse des cartes TNT2 et publication
- Tests Faisceau ⁵⁰Ti
- Expérience ²⁵⁶Rf @ JYFL

• S3

Topical Review par P.T. Greenlees & R.D. Herzberg dans Progress in Particle & Nuclear Physics 61, p674-720

La Spectroscopie prompte à Jyväskylä

La spectroscopie par décroissance α à Dubna

- Haute intensité de faisceau
- Fusion chaude (Cibles U, Pu, Po, Faisceau Xe, Ne)

GABRIELA : Plan focal de VASSILISSA

7 Germaniums pour la Spectroscopie γ Silicium planaire d'implantation (Noyaux & α) Tunnel de Siliciums pour les électrons de conversion

Changement de comportement vis-à-vis de la fission pour les super-lourds

Connaissances dans la région des noyaux très lourds

Peu de connaissances sur la structure des noyaux Région "frontière"

JRJC 08

Sur la route de l'îlot de stabilité

La spectroscopie prompte et le Recoil Decay Tagging

Spectroscopie prompte γ et e-

concurrence avec

- la fission
- les réactions de transfert
- l'excitation Coulombienne

Plan focal Identification des noyaux de recul Spectroscopie α, γ et électrons de conversion

