

GPD program at COMPASS

GDR PH-QCD, annual meeting Nov 27, 2013 ie Boer, CEA-Saclay/SPbN and CNRS/IPN

Marie Boer, CEA-Saclay/SPhN and CNRS/IPN-Orsay

CONTENTS

- \diamond Physics motivations
- \diamond Results on exclusive production of ρ°
- ♦ Spectrometer upgrades
- \diamond Measurements to access DVCS cross section
- \diamond GPD program and ongoing analysis

Generalized Parton Distributions

Acces to Generalized Parton Distributions through deep exclusive processes

Measurement of DVCS

Extraction of GPDs at COMPASS

160 GeV μ^+ and $\mu^ \rightarrow$ (polarisation \approx 80%) unpolarized target: liquid H_2 mostly sensitive to H $\mu P \rightarrow \mu' P' \gamma$ Measurement of $x_{bj} \approx 2\xi$, Q², t, Φ ; extraction of GPDs using $\frac{d^4 \sigma^{\mu^+} \pm d^4 \sigma^{\mu^-}}{dx_{bi} dQ^2 d|t| d\phi}$ $\frac{d^4\sigma(lP \to l'P'\gamma)}{dx_{hi}dQ^2d|t|d\phi} = d\sigma^{BH} + \left(d\sigma^{DVCS}_{unpol} + P_l d\sigma^{DVCS}_{pol}\right) + e_l \left(Re(I) + P_l Im(I)\right)$ $d\sigma^{\mu^{+\leftarrow}} + d\sigma^{\mu^{-\rightarrow}} \propto BH + \underbrace{DVCS_{unpol}}_{unpol} + Im(I) \Rightarrow Im(I) \propto c_n \sin\Phi \Rightarrow \underbrace{Im(\mathcal{H})}_{m} \propto H(\xi,\xi,t)$ $d\sigma^{\mu^{+\leftarrow}} - d\sigma^{\mu^{-\rightarrow}} \propto DVCS_{pol} + \underbrace{Re(I)}_{Re(I)} \Rightarrow Re(I) \propto c_n \cos\Phi \Rightarrow \underbrace{Re(\mathcal{H})}_{m} \propto \int dx H(x,\xi,t) \left(\frac{1}{\xi - x} - \frac{1}{\xi + x}\right)$ $d\sigma/dt$ needs 3% accuracy in normalization Φ harmonics decomposition of **Interference** term Sum & Difference Cross sections with opposite ⇒ provides a good access to **both Real and Im** part of beam charge & helicity Compton amplitude, constrain D-term for DD models

Why to study DVCS at COMPASS?

COMPASS: 160 GeV $\mu^+ \leftarrow$ and $\mu^- \rightarrow$ fixed target: liquid H₂ polarisation ≈ 80%

- \diamond explore the uncovered x_{bi} region between H1+ZEUS and HERMES+JLAB
- \diamond sensitive to sea quark and gluon distributions

* published results

Schedule of the GPD program

Schedule of the GPD program

DVCS test runs 2008, 2009 (1 week) 40 cm target + short recoil detector check faisability of DVCS program, first measurement of σ^{BH+DVCS} DVCS full run 2016-2017 (2x6 months) ⇒ access to GPD H

Exclusive production of p°

2002-2011, without recoil detector, NH₃ or ⁶LiD polarized target L and T target spin asymmetries + beam spin asymmetries

- Spin Density Matrix Element
- ➤ Asymmetries and cross section sensitive to different combination of GPDs σ^{ρ°} → chiral even GPDs ...
- Flavor separation of GPDs using meson production H^{p°} ∝ 2/3 H^u + 1/3 H^d + 3/8 H^g

NH₃ transversely polarized target 3 cells 30-60-30 cm long p=90%, f=16%

Exclusive production of p°: analysis

Exclusive p°: results on asymmetries

Target transverse spin (+ beam spin) asymmetries

Schedule: spectrometer upgrades

COMPASS at CERN, SPS

COMPASS spectrometer for DVCS studies

Upgrades for DVCS studies

Schedule: 2009 DVCS test run analysis

DVCS selection using recoil detector

Exclusivity selections: all final state particles are detected final state overconstrained \Rightarrow low level of background

Momentum balance $\Delta \phi \& \Delta P_T$

Scattering angles θ(μ,μ',t) vs θ(μ,μ',p) Missing mass and energy

 $\mu p \rightarrow \mu' p \gamma$

17

 $\begin{array}{c} \mu' \\ \Delta \phi = 180^{\circ} \qquad P_{T}(\gamma \mu') \\ P' \qquad \mu \\ P' \qquad P_{T}(P') \Rightarrow \Delta P_{T} = 0 \\ \perp \text{ plane} \end{array}$

$$M^{2} = [(P+\mu) - (P'+\mu'+\gamma)]^{2}$$

$$\Delta E = E_i - E_f$$

Acceptance correction

Spectrometer simulation: GEANT3 + GEANT4 (under development)

♦ Generator:

- Exclusive meson production according to Goloskokov and Kroll model
- DVCS: Frankfurt, Freund and Strikman model (Phys.Lett. B460 (1999) 417-424) with modifications for COMPASS (Sandacz, Sznajder, arXiv:1207.0333) [HEPGEN]
- DIS: LEPTO

\Rightarrow acceptance is corrected by 4-dim. weighting of events

Luminosity measurement in 2009

N beam tracks during random trigger gate → effective flux → effective luminosity

Random trigger provided by radioactive source ≈300 Hz, Δt_{trigger} = 4 ns

- momentum for **each** beam track
- selections as "physical analysis"
- → effective flux, reduce systematics

instant flux: $F(\mu^+) / F(\mu^-) = 2.4$

Goal: 3% error for DVCS cross section

Check of normalization and systematics

- ♦ Check luminosity for absolute normalization of cross sections by comparing measured F₂(x,Q2) with parameterizations of world results on F₂
- $\diamond~$ Check of $\mu\text{+}$ and $\mu\text{-}$ consistency
- $\diamond~$ Systematics studies for DIS and for DVCS
- \Rightarrow normalization is validated
- \Rightarrow systematics are taken into account

Background reductions

- ♦ Rates are estimated using Monte Carlo simulations
- ♦ Corrections by events weighting (bin/bin)
- semi-inclusive: $\mu P \rightarrow \mu' P' \pi^{\circ}/\eta ... \rightarrow \mu' P' \gamma X$
- exclusive π° : $\mu P \rightarrow \mu' P' \pi^{\circ} \rightarrow \mu' P' \gamma \gamma$
- diffractive dissoc. of P': $\mu P \rightarrow \mu' P^* \gamma \rightarrow \mu' P' \gamma X$
- ♦ rates are expected to be under control at COMPASS kinematics
- \diamond exclusive π° background is deduced according to the cross section measured using the same data with a similar analysis method

Preliminary results for DVCS: 2009 test run

Excess at large x_{bi} interpreted to come from DVCS

Schedule: GPD program predictions

Predictions for DVCS – t dependance

« transverse size of the proton »

 $\frac{d\sigma^{DVCS}}{dt} \propto e^{B(x_{bj})t} \qquad \frac{r_{\perp}}{2} \simeq B(x_{bj}) = B_0 + 2\alpha' \ln \frac{x_0}{x_{bj}}$

Predictions for DVCS – $\mathcal{R}e(F_1\mathcal{H})$

Beam spin and charge asymmetry: $\cos \Phi 1^{st}$ moment $\Rightarrow \mathcal{R}e(F_1\mathcal{H})$ Important to constrain GPD fits

°s n 0.4 S 0.35 A_{CS,U} A_{cs,U} 0.005 < x_{Bi} < 0.01 0.01 < x_{Bi} < 0.02 0.02 < x_{Bi} < 0.03 0.35 0.35 Compass projected Compass projected Compass projected 0.3 0.3 0.3 0.25 0.25 0.25 0.2 0.2 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.05 0.05 0.05 -0.05 -0.05 -0.05 -0.15 -0.1 -0.1 0.2 0.3 0.4 0.5 0.7 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 -t [(GeV/c)²] -t [(GeV/c)²] -t [(GeV/c)²] °S 0.35 ⊕ ∩ ^{0.4} S 0.35 A cos≬ 0.03 < x_{Bi} < 0.07 .07 < x_{Bi} < 0.15 0.15 < x_{Bi} < 0.30 0.35 Compass projected Compass projected Compass projected 0.3 0.3 0.3 Hermes JHEP 07 (2012) 032 Hermes JHEP 07 (2012) 032 Hermes JHEP 07 (2012) 032 0.25 0.25 0.25 0.2 0.2 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.05 0.05 0.05

0.5

0.6

0.7

-t [(GeV/c)²]

0.4

0.3

0.2

M. Boer

-0.05

-0.1

0.4

0.5

0.6

0.7

-t [(GeV/c)²]

0.3

0.2

0

-0.05

-0.1

0.7

-t [(GeV/c)²]

Mueller's fits to world data

COMPASS projections: 2 years

VGG

0

-0.05

-0.16

0.2

0.3

0.4

0.5

0.6

Predictions for vector mesons – t dep.

sensitive to the size of the nucleon and the transverse size of the meson

CONCLUSION

- \diamond Unique kinematical range for GPDs studies
- \Rightarrow Non zero transverse GPD H_T from exclusive ρ° asymmetries $A_{\rm UT}^{\sin \phi_S}$ = -0.019 ± 0.008 (stat.) ± 0.003 (syst.)
- \diamond Promising results for DVCS in 2009
- Analysis of 2012 DVCS run ongoing, and future 2016-17 long run will provide measurement of DVCS cross section and access to GPDs