Pion and Kaon multiplicities from muon deep inelastic scattering

Quiela Curiel

IRFU/SphN CEA-Saclay COMPASS Collaboration

November 25, 2013

Outline

- Motivation
- The COMPASS experiment
- Results
- Conclusions

Nucleon structure

Proton structure

- 3 valence quarks
- Gluons
- Sea quarks

Spin contribution

$$S_N = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_Z$$

where

 ΔG : gluons contribution L_z : orbital momentum $\Delta \Sigma$: quark contribution

 $\Delta \Sigma = \Delta u + \Delta d + \Delta s$

World data PLB 647 (2007) 8-17

ΔΣ ~ 0.3

Access to nucleon structure

Information on nucleon structure can be extracted from DIS (SIDIS) process

Inclusive deep inelastic scattering (DIS)		
$l N \rightarrow l' N + X$		
Kinematic variable	S 2	 Q² : photon virtuality (γ*) x: Bjorken scaling variable y: Inelasticity
Cross section		$\sigma \sim \text{PDF}(x, Q^2)$
Semi inclusive deep inelastic scattering (SIDIS)		
$l N \rightarrow l' N h + X$		
Kinematic variables		z: Fraction of energy
Cross section		$\boldsymbol{\sigma} \sim \text{PDF}(\boldsymbol{x}, \boldsymbol{Q}^2) \cdot \boldsymbol{D}_q^h(\boldsymbol{z}, \boldsymbol{Q}^2)$

Strange quark polarization Δs

Strangeness contribution to spin

$$\Delta s = \int_{x_{min}}^{x_{max}} s(x) + \bar{s}(x) dx$$
From inclusive measurements
PLB 647 (2007) 8-17
$$\Delta s = -0.08 \pm 0.02 \pm 0.02$$
with *SU3* asymmetry assumed
$$\Delta s = -0.02 \pm 0.02 \pm 0.02$$
in a limited x range
$$\Delta s = -0.02 \pm 0.02 \pm 0.02$$
in a limited x range
$$\Delta s = -0.02 \pm 0.02 \pm 0.02$$
SIDIS data
DIS data

PLB 64

Q. Curiel

Strange quark polarization (Δs) and D_q^K in SIDIS

 $\Delta s(x)$ extracted from SIDIS data depends on the choice of FFs

FF parametrization: HKNS, DSS, AKK,... Disagreement among themselves

- Different assumptions
- Different set of data points to fit

More SIDIS data are needed to better constrain FF.

Fragmentation functions D_q^n

 Probability that a parton q fragments into a hadron h carrying a fraction z of energy

$$z = \frac{E_h}{E}$$
 (with $E = E' - E_{Beam}$)

- Present in high energy process where hadrons are identified as a final state
- Universal → can be extracted from global fits on different observables

Access to **FFs**

Access to **FFs** is possible via high-energy reactions

e⁺e⁻ annihilation (into hadrons) (Belle & BABAR)

- High precision data
- No dependence on PDF
- Access to singlet combination only

 $(D_{\Sigma}=D_{\overline{u}}^{h}+D_{d}^{h}+D_{s}^{h}+...)$

Hadron-hadron collision (RHIC, Fermi Lab, ..)

- High precision data
- Flavor/charge separation
- Sensitive to gluon FF
- Dependence on PDF

Lepton-hadron collision (COMPASS, HERMES, JLab)

- High precision data
- Flavor/charge separation
- Access larger z
- Study of hadronization process
- Dependence on PDF

November 25, 2013

 e^{\dagger}

Fragmentation functions from SIDIS

FFs are accessible trough hadron multiplicities (*M*^h) in a SIDIS process (hadron yields produced per DIS events)

$$\boldsymbol{M}^{h}(\boldsymbol{x},\boldsymbol{Q}^{2},\boldsymbol{z}) = \frac{d\sigma_{SIDIS}^{h}/d\boldsymbol{z}}{\sigma_{DIS}} = \frac{\Sigma_{q}e_{q}^{2}\boldsymbol{q}(\boldsymbol{x},\boldsymbol{Q}^{2})\boldsymbol{D}_{q}^{h}(\boldsymbol{z},\boldsymbol{Q}^{2})}{\Sigma_{q}e_{q}^{2}\boldsymbol{q}(\boldsymbol{x},\boldsymbol{Q}^{2})}$$

 Hadron multiplicities depend on the product PDF x FFs Up and down unpolarized PDF well known

Flavor separation

$$\boldsymbol{D}_{u}^{h}, \boldsymbol{D}_{\overline{u}}^{h}, \boldsymbol{D}_{d}^{h}, \boldsymbol{D}_{\overline{d}}^{h}, \boldsymbol{D}_{s}^{h}, \boldsymbol{D}_{\overline{s}}^{h}, \dots$$

Recent results (FFs global effort)

 π ± multiplicities at low-medium z bins are reasonable well described by DSS fit in HERMES case.

K± multiplicities description not optimal

2nd Workshop on Probing Strangeness in Hard Processes Nov 11-13 2013 M. Osipenko

COMPASS spectrometer

COmmon Muon Proton Apparatus for Structure and Spectroscopy

- Fixed target at CERN
- ⁶LiD target (2006)
- Two stage spectrometer
- Tracking and particle identification
- High acceptance

Magnets Target **RICH** detector μ 160-200 GeV PID for π , K and p (3 GeV/c

Particle identification (PID)

RICH detectorKing-Imaging Cherenkov I $v_h > c/n \rightarrow$ Cherenkov radiation $\int \frac{Photon}{Detectors}$ UVMirrorsBeam

Photon detection: MAPMT and MWPC coated with CsI

- Separate π , *K* and *p* in a high-intensity environment
- Covers full spectrometer acceptance
- Mirror system ~ 22 m²
- Photon detection system: MWPC + MAPMT

Particle identification algorithm

- Photon trajectory reconstruction \rightarrow
 - $\boldsymbol{\Theta}_{_{\!C\!H}}$ measured
- Maximum likelihood estimator
 - 5 mass hypothesis (e, μ , π , K and p)
 - Background hypothesis
- Maximum of 6 likelihood \rightarrow good hypothesis

- Multidimensional binning : $x_{_{Bi}}$, y and z (relevant variables)
 - Extract raw multiplicities from data Correct for PID efficiencies (for identified hadrons)
 - Geometric acceptance of the spectrometer and reconstruction efficiency estimated via MC
 - Correct real data

Experimental multiplicities

For each bin (x_{Ri}, y, z) :

- 1. Get number of DIS events (N_{DIS})
- 2. Get number of hadrons $(N_{\mu}, N_{\pi}, N_{\kappa})$ and N_{μ})

The hadron identification relies on the RICH detector performance

→ Correct number of identified hadrons by detector inefficiencies

$$\begin{pmatrix} N_{\pi} \\ N_{K} \\ N_{R} \\ N_{p} \end{pmatrix} = \begin{pmatrix} \epsilon_{I} (\pi^{\pm} \Rightarrow \pi^{\pm}) & \epsilon_{M} (\pi^{\pm} \Rightarrow K^{\pm}) & \epsilon_{M} (\pi^{\pm} \Rightarrow p^{\pm}) \\ \epsilon_{M} (K^{\pm} \Rightarrow \pi^{\pm}) & \epsilon_{I} (K^{\pm} \Rightarrow K^{\pm}) & \epsilon_{M} (K^{\pm} \Rightarrow p^{\pm}) \\ \epsilon_{M} (p^{\pm} \Rightarrow \pi^{\pm}) & \epsilon_{M} (p^{\pm} \Rightarrow K^{\pm}) & \epsilon_{I} (p^{\pm} \Rightarrow p^{\pm}) \\ \end{pmatrix}_{(P,\theta)} \begin{pmatrix} T_{\pi} \\ T_{K} \\ I_{p} \end{pmatrix}$$
 True number of id hadrons

RICH probability matrices $\epsilon(P,\theta)$ RICH matrices are extracted from real data

P : particle momentum

 θ : incident angle at RICH entrance

RICH probability matrices determiantion

• Use pure samples of π , *K* and *p*, coming from known decays

- $\mathbf{K}^{0} \rightarrow \pi^{+}\pi^{-}$
- $\Phi \rightarrow K^{+}K^{-}$
- $\Lambda \rightarrow \pi p (\Lambda \rightarrow \pi p)$

Analysis features

- Dependence on P (momentum) and θ (incident angle at RICH entrance)
- Different RICH response for *h*+ and *h*-

40 matrices

Acceptance

Correction for geometric acceptance of the spectrometer and reconstruction efficiency

 LEPTO generator: DIS events with hadrons as final state (generated SIDIS events)

 $M^h_{gen}(x_{Bj}, y, z)$

 Reconstruct LEPTO SIDIS events using COMPASS spectrometer simulation (GEANT3)

 $M^h_{rec}(x_{Bj}, y, z)$

Acceptance

$$A(x_{Bj}, y, z) = \frac{M_{rec}^{h}(x_{Bj}, y, z)}{M_{gen}^{h}(x_{Bj}, y, z)}$$

Q. Curiel

- Geometric acceptance of the spectrometer and reconstruction efficiency
- Correct real data

Unidentified hadron Multiplicities

COMPASS

π multiplicities

COMPASS

November 25, 2013

K multiplicities

COMPASS

November 25, 2013

Summary & Outlook

- Preliminary π and K multiplicities have been extracted in a multidimensional binning (x_{Bj},y,z) from SIDIS process (µd → µ'h +X) for 2006 COMPASS data (⁶LiD target)
- Improvement on the RICH particle identification process \rightarrow reduction in the systematic errors
- The COMPASS π multiplicities will be included in a new global fit to extract FF
- An analysis to study the contamination from exclusive vector mesons (ρ and Φ) is on-going
- Final π multiplicity soon ready (broad kinematical range)
- More work needed for the final K multiplicity
- P_T^2 dependent π and K multiplicities in (x, Q², z) bins analysis is on-going