Proton Radius Puzzle: Global Analysis of Electron Scattering Data and New Experiments from MAMI

Michael O. Distler for the A1 collaboration @ MAMI

Institut für Kernphysik Johannes Gutenberg-Universität Mainz

Introduction: Form factor ↔ charge distribution

- 2 The Mainz measurements
- Analysis of the world data
- New Experiments
- Summary

Proton / Neutron

mass

 $m_p = 938.272046(21) \,\mathrm{MeV/c^2}$ Discovered by E. Rutherford (1919)

 $m_n = 939.565379(21) \,\mathrm{MeV/c^2}$

Discovered by J. Chadwick (1939)

shape

departure from spherical symmetry determined in N $\longrightarrow \Delta$ measurements

size

moments of electric charge and magnetization distribution derived from form factor measurements

stiffness

electric and magnetic polarizabilities extracted from Virtual Compton scattering (VCS)

The cross section:

$$\frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{Mott}} = \frac{1}{\varepsilon \left(1 + \tau\right)} \left[\varepsilon G_E^2 \left(Q^2\right) + \tau G_M^2 \left(Q^2\right)\right]$$
with:

$$\tau = \frac{Q^2}{4m_p^2}, \quad \varepsilon = \left(1 + 2\left(1 + \tau\right)\tan^2\frac{\theta_e}{2}\right)^{-1}$$

What more can we learn from the form factors?

- Low-Q ↔ Long range structure
- How big is the proton?
- Is there evidence for a pion cloud?

$$\left\langle r_{E}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}G_{E}}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0} \quad \left\langle r_{M}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}\left(G_{M}/\mu_{p}\right)}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0}$$

Timeline of proton cross section data

Classical picture

form factor:
$$G(q^2) = \frac{1}{e} \int_0^\infty \rho(r) \frac{\sin qr}{qr} 4\pi r^2 dr$$

Light-front picture

Infinite Momentum Frame: 3D distribution gets "squashed".

From: M. Vanderhaeghen, Th. Walcher, arXiv:1008.4225v1

The radius puzzle – Lamb shift in μ H

The radius puzzle – Lamb shift in μ H

Filled dots: Results from new measurements. Hollow dots: Reanalysis of existing data.

Discussion of the Lamb shift / electron scattering discrepancy

• Muonic hydrogen (Lamb Shift)

 $r_p = 0.84184(67) \, \text{fm}$

- R. Pohl et al., Nature 466, 213-216 (2010)
- Mainz form factor measurement

 $r_p = 0.879(8) \, \text{fm}$

J.C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010).

• Analysis of previous ep scattering data

 $r_p = 0.895(18) \, \text{fm}$

- I. Sick, Phys. Lett. **B576** 62-67 (2003).
- Electronic hydrogen (CODATA) (Hyperfine structure and Lamb shift)

 $r_p = 0.8768(69) \, \text{fm}$

P.J. Mohr et al., Rev. Mod. Phys. 80 633-730 (2008).

Discrepancy is between muonic and electronic measurements

Early attempts to resolve the discrepancy 3rd Zemach-Moment

De Rújula's toy model

- A. De Rújula, "QED is not endangered by the proton's size", Phys. Lett. B693, 555 (2010).
- Sum of "single pole" and "dipole"

$$\rho_{\text{Proton}}(r) = \frac{1}{D} \left[\frac{M^4 e^{-Mr} \cos^2(\theta)}{4\pi r} + \frac{m^5 e^{-mr} \sin^2(\theta)}{8\pi} \right]$$
$$D \equiv M^2 \cos^2(\theta) + m^2 \sin^2(\theta)$$

using $M = 0.750 \text{ GeV}/c^2$, $m = 0.020 \text{ GeV}/c^2$, and $sin^2(\theta) = 0.3$ and

$$\rho_{(2)}(\mathbf{r}) = \int d^3 \mathbf{r}_2 \, \rho_{\text{charge}}(|\vec{\mathbf{r}} - \vec{\mathbf{r}_2}|) \, \rho_{\text{charge}}(\mathbf{r}_2)$$

we get the third Zemach moment:

$$\langle r^3 \rangle_{(2)} = \int d^3 r \, r^3 \rho_{(2)}(r) = 36.2 \, \mathrm{fm}^3$$

We put $\langle r^3 \rangle_{(2)} = 36.2 \, \text{fm}^3$ in the Lamb shift formular:

$$L^{5th}[\langle r^2 \rangle, \langle r^3 \rangle_{(2)}] =$$

$$\left(209.9779(49) - 5.2262 \frac{\langle r^2 \rangle}{\mathrm{fm}^2} + 0.00913 \frac{\langle r^3 \rangle_{(2)}}{\mathrm{fm}^3}\right) \mathrm{meV}$$

and get $r_{
ho} = 0.878 \, {\rm fm}$

problem solved

- De Rújula's toy model
- standard dipole
- Bernauer-Arrington fit assembly

M.O.D., J.C. Bernauer, Th. Walcher, Phys. Lett. B696, 343 (2011)

Another attempt to resolve the discrepancy Structures (dips, thorns) at very low Q^2

Nuclear Finite Size Effects In Light Muonic Atoms

J. L. Friar, Annals Phys. 122 (1979) 151.

Finite-size shift in the energy of the *n*th s-state through order $(Z\alpha)^6$:

$$\begin{split} \Delta E_n &= \frac{2\pi}{3} |\phi_n(0)|^2 Z\alpha \times \\ &\left(\left\langle r^2 \right\rangle - \frac{Z\alpha\mu}{2} \left\langle r^3 \right\rangle_{(2)} + (Z\alpha)^2 F_{\text{REL}} + (Z\alpha\mu)^2 F_{\text{NR}} \right) \right) \\ &= 5200 \frac{\mu eV}{fm^2} \left\langle r^2 \right\rangle - 9.1 \frac{\mu eV}{fm^3} \left\langle r^3 \right\rangle_{(2)} \\ &\quad + 0.28 \frac{\mu eV}{fm^2} F_{\text{REL}} + 0.064 \frac{\mu eV}{fm^4} F_{\text{NR}} \\ &\simeq 5200 \frac{\mu eV}{fm^2} \left\langle r^2 \right\rangle - 9.1 \frac{\mu eV}{fm^3} \left\langle r^3 \right\rangle_{(2)} \\ &\simeq 5200 \frac{\mu eV}{fm^2} r_p^2 - 35 \frac{\mu eV}{fm^3} r_p^3 \\ &\text{with } \frac{\left\langle r^3 \right\rangle_{(2)}}{\left\langle r^2 \right\rangle^{3/2}} = \frac{35\sqrt{3}}{16} \text{ (valid for Dipole FF, only)} \end{split}$$

How small are F_{REL} and F_{NR} ? Dipole form factor

Now we construct a FF that "resolves" the discrepancy:

$$G(q^2) = (1-x)\left(1+\frac{q^2}{m^2}\right)^{-2} + x \exp\left(-\frac{q^4}{2\sigma^2}\right)$$

with x = -1.7%, m = 0.776, $\sigma = 0.04^2$

Nuclear Finite Size Effects In Light Muonic Atoms

"Thorn" form factor

The "Dipole" approximation completely breaks down Similar conclusion: J. D. Carroll, A. W. Thomas, J. Rafelski and G. A. Miller, "Proton form-factor dependence of the finite-size correction to the Lamb shift in muonic hydrogen," arXiv:1108.2541

The Mainz measurements

The Mainz Microtron MAMI

The Mainz high-precision p(e,e')p measurement: Three spectrometer facility of the A1 collaboration

Design goal: High precision through redundancy

- Statistical precision: 20 min beam time for <0.1%
- Control of luminosity and systematic errors: Measure all quantities in as many ways as possible:
 - Beam current:
 - Foerster probe (usual way) \iff pA-meter
 - \longrightarrow measures down to extremely low currents for small heta
 - Luminosity:
 - $\text{current} \times \text{density} \times \text{target length}$
 - third magnetic spectrometer as monitor
 - Overlapping acceptance
 - Where possible: Measure at the same scattering angle with two spectrometers

Measured settings and future (high Q²) expansion

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{1}{\varepsilon \left(1 + \tau\right)} \left[\varepsilon G_{E}^{2}\left(Q^{2}\right) + \tau G_{M}^{2}\left(Q^{2}\right)\right]$$

Cross sections / standard dipole

Rosenbluth method

$$\sigma_{red} = \varepsilon \left(\mathbf{1} + \tau\right) \frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{Mott}} = \left[\varepsilon \mathbf{G}_{E}^{2}\left(\mathbf{Q}^{2}\right) + \tau \mathbf{G}_{M}^{2}\left(\mathbf{Q}^{2}\right)\right]$$

Instead of independent separation at discrete Q^2 :

Super-Rosenbluth separation

Take (many, flexible) models for form factors, plug them into cross section formula. Fit to all cross section data in one go!

- Feasible due to fast computers.
- All data at all Q² and ε values contribute to the fit, i.e. full kinematical region used, no projection (to specific Q²) needed.
- Global normalization fixed to static limits, $G_E(0) = 1$, $G_M(0) = \mu_p$.

Cross sections / standard dipole

Cross sections + spline fit

Rosenbluth formular gives additional constraints

31 normalization parameters allow a statistical analysis. The luminosity is a major source of the systematic error \rightarrow Here, it becomes a statistical error

Result: Cross section fits (180 MeV)

Form factor results

Jan C. Bernauer *et al.*, "High-precision determination of the electric and magnetic form factors of the proton", PRL 105, 242001 (2010), arXiv:1007.5076

Form factor results: G_E/G_M ratio

Recoil Polarimetry

Jan C. Bernauer *et al.*, PRL 105, 242001 (2010), arXiv:1007.5076 X. Zhan *et al.*, Phys.Lett. B705 (2011) 59-64, arXiv:1102.0318 J. Arrington *et al.*, Phys. Rev. C76 (2007) 035205, arXiv:0707.1861

Feynman graphs of leading and next to leading order for elastic scattering

All graphs are taken into account:

- vacuum polarization (v1):
 e, (μ, τ)
 Maximon/Tjon (2000) and
 Vanderhaeghen et al. (2000)
- electron vertex correction
- Coulomb distortion (two photon exchange)
- real photon emission

Comments on Coulomb distortion and TPE

• Coulomb distortion:

Exchange of one hard and multiple soft photons Feshbach (1948), Mo and Tsai (1969).

• Two-photon exchange (TPE) with and w/o excited intermediate states: Exchange of two hard photons

Still not reliable and highly debated

Figure shows a recent experimental result from JLab.

Meziane, M. et al.: Search for effects beyond the Born approximation in polarization transfer observables in ep elastic scattering, PRL 106, 132501 (2011), arXiv:1012.0339

Description of the radiative tail

Inclusion of world data

J.C. Bernauer *et al.*: The electric and magnetic form factors of the proton, arXiv:1307.6227

Inclusion of world data

- Extend data base with world data ⇒ Cross check, extend Q² reach
- Take cross sections from Rosenbluth exp's
- Sidestep unknown error correlation
 - Update / standardize radiative corrections
 - One normalization parameter per source (Andivahis: 2)
- Two models:
 - Splines with variable knot spacing
 - \implies Adapt knot density to data density
 - Padé-Expansion
 - \implies Low(er) flexibility, for comparison

L. Andivahis et al., Phys. Rev. D50, 5491 (1994). F. Borkowski et al., Nucl. Phys. B93, 461 (1975). F. Borkowski et al., Nucl.Phys. A222, 269 (1974). P. E. Bosted et al., Phys. Rev. C 42, 38 (1990). M. E. Christy et al., Phys. Rev. C70, 015206 (2004) M. Goitein et al., Phys. Rev. D 1, 2449 (1970). T. Janssens et al.. Phys. Rev. 142, 922 (1966). J. Litt et al ... Phys. Lett. B31, 40 (1970). L. E. Price et al., Phys. Rev. D4, 45 (1971). I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005). S. Rock et al... Phys. Rev. D 46, 24 (1992). A. F. Sill et al., Phys. Rev. D 48, 29 (1993). G. G. Simon et al.. Nucl. Phys. A 333, 381 (1980). S. Stein et al., Phys. Rev. D 12, 1884 (1975). R. C. Walker et al., Phys. Rev. D 49, 5671 (1994).

It works!

Model dependence

- Spline model has variable knot spacing
- Vary knots, refit, record χ^2 .
- Select the 68% best tries.
- Construct envelope of models.

Band will cover at least 68% of all model variations!

Form factor ratio G_E/G_M

- Available data is sparse
- Mostly Q² dependence
- Few data on ε dependence
- Only possible to fit simple model
- In addition to Feshbach Coulomb-correction!

$$\delta = \boldsymbol{a} \cdot (\boldsymbol{1} - \varepsilon) \cdot \log\left(\boldsymbol{1} + \boldsymbol{b} \cdot \boldsymbol{Q}^2\right)$$

G_E fit incl. polarized data

G_M fit incl. polarized data

G_E/G_M fit incl. polarized data

Back to low Q² – Charge Radius

Final result from flexible models

$$\langle r_E^2 \rangle^{\frac{1}{2}} = 0.879 \pm 0.005_{\text{stat.}} \pm 0.004_{\text{syst.}} \pm 0.002_{\text{model}} \pm 0.004_{\text{group}} \text{ fm},$$

 $\langle r_M^2 \rangle^{\frac{1}{2}} = 0.777 \pm 0.013_{\text{stat.}} \pm 0.009_{\text{syst.}} \pm 0.005_{\text{model}} \pm 0.002_{\text{group}} \text{ fm}.$

(Eur.Phys.J. D33 (2005) 23-27: Zemach and magnetic radius of the proton from the hyperfine splitting in hydrogen: 0.778(29) fm)

New Experiments

JLab

- Very low Q² experiment, near 0°
- Form factor ratio at very low Q²
- PSI
 - MUSE: elastic µp scattering

Guy Ron

- Lamb shift measurements on muonic helium
- MAMI
 - Initial state radiation
 - Measurement of the elastic $A(Q^2)$ form factor of the deuteron at very low momentum transfer

Precision Measurement of the Hydrogen-Deuterium 1S–2S Isotope Shift

Parthey, Christian G. and Matveev, Arthur and Alnis, Janis and Pohl, Randolf and Udem, Thomas and Jentschura, Ulrich D. and Kolachevsky, Nikolai and Hänsch, Theodor W.: *Precision Measurement of the Hydrogen-Deuterium 1S–2S Isotope Shift*, Phys. Rev. Lett. **104**, 233001 (2010).

Beam apparatus for two-photon spectroscopy on the hydrogen / deuterium atomic beam.

Deuteron radius from the H-D isotope shift and muonic hydrogen

Proton radius: The challenge continues

Combining H-D isotope shift and μ H:

$$\begin{cases} r_d^2 - r_p^2 &= 3.82007(65) \, \text{fm}^2 \\ r_p &= 0.84087(39) \, \text{fm} \end{cases} \Rightarrow r_d = 2.12771(22) \, \text{fm}$$

A. Antognini et al., Science 339 (2013) 417-420

Paul Indelicato, Mainz, 2013

Deuteron radius from the H-D isotope shift and muonic hydrogen

Proton radius: The challenge continues

Combining H-D isotope shift and e-p elastic scattering:

$$\begin{cases} r_d^2 - r_p^2 &= 3.82007(65) \, \text{fm}^2 \\ r_p &= 0.879(8) \, \text{fm} \end{cases} \} \Rightarrow r_d = 2.143(3) \, \text{fm}$$

J.C. Bernauer et al., Phys.Rev.Lett. 105 (2010) 242001

Paul Indelicato, Mainz, 2013

World low Q^2 data and predicted errors

♦ Berard (1973), • Simon (1981), ■ Platchkov (1990), ▲ MAMI

Possible Improvements on Proton Radius

Where should we determine the root-mean-square-radius?

$$\langle r_E^2 \rangle = -6 \left. \frac{d}{dQ^2} \left. \frac{G_E(Q^2)}{G_E(Q^2)} \right|_{Q^2=0}$$

- Extrapolation to $Q^2 = 0$, no absolute cross section!
- Sufficient "Lever arm" for radius determination $\rightarrow Q^2 \approx 0.2 \text{GeV}^2/c^2$
- Reduction of higher orders \rightarrow linear fit

Virtual Compton Cross Section $H(e, e')p\gamma$

Initial state radiation

- *H*(*e*, *e*')*p*γ Cross section dominated by Initial/Final State Radiation
- Final State Radiation: Four-Momentum-Transfer Q² constant
- Initial State Radiation: Continuous Q² range
- Experiment
 - First spectrometer for "Normalization" at elastic peak
 - Start with second spectrometer setup at elastic peak
 - Measurement of the radiative tail by change of the magnetic field of second spectrometer
 - Keep everything else constant!

Initial State Radiation

ISR 2013 (E0 = 495 MeV)

M. Mihovilovič et al., Data taking August/September 2013

Initial State Radiation

M. Mihovilovič et al.

Summary

- Form factor ↔ charge distribution
- Painz measurements
 - High-precision p(e,e')p cross sections
 - Inclusion of the world data
- Outlook
 - New Experiments at PSI, JLab, and MAMI

Final result from flexible models

$$\langle r_E^2 \rangle^{\frac{1}{2}} = 0.879 \pm 0.005_{\text{stat.}} \pm 0.004_{\text{syst.}} \pm 0.002_{\text{model}} \pm 0.004_{\text{group}} \text{ fm},$$

 $\langle r_M^2 \rangle^{\frac{1}{2}} = 0.777 \pm 0.013_{\text{stat.}} \pm 0.009_{\text{syst.}} \pm 0.005_{\text{model}} \pm 0.002_{\text{group}} \text{ fm}.$

 $\langle r_M^2 \rangle^{\frac{1}{2}}$

0 772

0.769

Results with world data

+ Rosenbluth data $\langle r_E^2 \rangle^{\frac{1}{2}}$ +Rosenbluth and Polarization data 0.878