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Jets in QCD

in-medium jet modification:  departures from p-p baseline 
!2

• JET QUENCHING :     a 
tool to probe the Quark-
Gluon-Plasma  and QCD 
dynamics at high parton 
density 



Jets in QCD
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• a Jet is an energetic and collimated bunch of 
particles produced in high energy collisions 

• Partons to Hadrons: at high energy large 
separation between short and large distance 
physics (QCD-factorization). Hard scale: Q  ≫ Λ QCD 

• Jets are originated from  highly virtual partons that 
degrade their virtuality by successive branchings 



Jets in QCD
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The jet is a coherent object, at each step of the cascade the total 
color charge is conserved: successive branchings are ordered in 
angles 

Jets in QCD

Q ⌘ ER



Jets in QCD
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OPAL data, Q = 90 GeV
ALEPH data, Q = 130 GeV

• MLLA + LPHD  (limiting 
spectrum Q0 = ΛQCD) 

• perturbative jet scale  
Q= E R 

• color coherence ⇒ 
angular ordering (AO)

l=ln(1/x)
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[Dokshitzer, Khoze, Mueller, Troyan, Kuraev, Fong, Webber...]



• How does the medium interact with a jet?
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Color coherence will be altered inside a 
colored medium (quantum disentanglement)

Jets in the QGP

QGP



 General Picture
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two main medium effects: 
• Cjet  induces BDMPS radiation: onset of rapid branching & 

broadening (multiple-scatterings) 
!

• coherent structure (AO) is weakened :: antiangular radiation 
(quasi-collinear & long form times)

R

• jets at sufficiently high-pT 
are collimated   

• the medium resolves only 
the total charge ❬〈 Cjet ❭〉 ≠ 0

Y. M.-T, K. Tywoniuk, C. A. Salgado, PRL (2011)

J. -P. Blaizot, F. Dominguez,  E. Iancu, Y. M. -T.  (2013) 



[Baier, Dokshitzer, Mueller, Peigné, Schiff (1995-2000) Zakharov (1996)]

• Scatterings with the 
medium can induce 
gluon radiation 

• The radiation mechanism 
is closely related to  
transverse momentum 
broadening

� k2
? ' q̂ �t

 where the quenching parameter

is related to the collision rate in a thermal bath 
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BDMPS: induced g-radiation 
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BDMPS: induced g-radiation 
How does it happen?    After a certain number of scatterings 
coherence between the parent quark and gluon fluctuation is 
broken and the gluon is formed (decoherence is faster for soft 
gluons)  

tf ⌘ !

hq2
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• soft gluon emissions 

➡ Short branching times                 and  large phase-space

when                    Multiple branchings are no longer negligible

! ⌧ !c
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• mean energy loss dominated by «hard» emissions ! ⇠ !c

➡ High gluon multiplicity regime:  
       Dominant in jet shapes and differential energy loss

BDMPS: induced g-radiation 
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Color randomization: re-scatterings with color 
charges in the medium quickly destroy color 
coherence of partons in the jet

Decoherence of multi-g branching
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Y. M.-T, K. Tywoniuk, C. A. Salgado (2010) 
J. Casalderray-Solana, E. Iancu (2011)  

•  For large media two subsequent 
emissions are independent and 
therefore factorize 

•  Interferences are suppressed 
by a factor                          tbr/L⌧ 1

Note that this is not the case in a 
vacuum shower where color 
coherence is responsible for 

Angular-Ordering
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Decoherence of multi-g branching
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Successive branchings are then independent and quasi-local. 

tbr ⌧ t ⇠ LTime-scale separation:

Decoherence of multi-g branching
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The inclusive distribution of gluons with momentum k inside a 
parton with momentum p is defined as :

k?, x = k

+
/p

+
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k

+ dN

dk

+
d

2k
⌘ D(x,k, tL)

Inclusive Gluon Distribution
J. -P. Blaizot, F. Dominguez,  E. Iancu, Y. M. -T. arXiv:1311.5823  



• we assume no pt-broadening during the branching 
• broadening is accounted for classically in a diffusion term 
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J. -P. Blaizot, F. Dominguez,  E. Iancu, Y. M. -T. arXiv:1311.5823  
Inclusive Gluon Distribution



The quenching parameter as a (local) transport coefficient  
is defined as 

q̂ ⌘hp2
?i
L

= ⇢

Z

q
q2 d�el

d2q
/ ↵2

s CR ⇢ log(Q2/m2
D)

The hard scale Q depends 
on the process and is 
related to the typical 
transverse momentum in 
the problem:
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Q2 ⇠ q̂L

Radiative corrections to the 
quenching parameter

q
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q̂1 =
Z

q,k
[(q + k)2 � q2]

Z
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d2q d2k d!

correction due to the prob. of 
no emission (unitarity)

correction to pt-broadening due 
to single-gluon radiation

Radiative corrections to the 
quenching parameter



1- Single scattering requires  the time scale of the fluctuation to be 
smaller than the BDMPS formation time at which multiple scatterings 
become important, i.e., 

or
p

! q̂0 ⌧ k2 ⌧ p2�t⌧
p

!/q̂0

2- We define now an initial transport coeff.  
measured at a initial time   
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The double logs correspond to gluons that are formed before the 
medium resolves the system «gluon-emitter» (no LPM suppression)
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Radiative corrections to the 
quenching parameter

⇠ tbr

 [A. H. Mueller, B. Wu, T. Liou arXiv: 1304.7677] 



The DL’s are resummed assuming strong ordering in formation time 
(or energy) and transverse mom. of overlapping successive gluon 
emissions (a la BFKL or DGLAP) 

q̂0 q̂1 q̂n

.	
.	

�t0 ⇠ 1/mD ⌧ L

�t0 ⌧ �t1 ⌧ L

�t0 ⌧ �t1 ⌧ ...�tn ⌧ L

Radiative corrections to the 
quenching parameter
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We end-up with 2 coupled equations 

d
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the transport coefficient runs up to the typical (local) scale k2 ⇠ q̂�tf

J. -P. Blaizot, Y. M. -T. 
(in preparation)

1 - Distribution of gluons as a function of time 

II- The quenching parameter  

Gluon distribution II
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 As a consequence, the DL’s not only enhance the pt-broadening 
but also the radiative energy loss expectation:  

�E ⌘
Z

d! ! dN/d!

When the logs become large (asymptotic behavior)
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Radiative energy loss revisited

�E ⇠ L3To be compared to the ADS/CFT (strong coupling) estimate
[F. Dominguez et al (2008) C. Marquet (2009)] 



Understanding jet modifications at 
LHC
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Nuclear modification factor 

L = 2-3 fm 
q̂ = 6-2.5 GeV2/fm

RAA = dNAA / ( dNpp x Ncoll )

Solving the evolution equation 
for D convoluted with an initial 
power low spectrum 

K. Tywoniuk, Y. M. -T. (in preparation)
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Energy transport at large angles

Just a little fraction of the ‘missing energy’ is recovered when gradually
increasing the jet opening : most of the energy is lost at large angles
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What is the mechanism for energy transport at large angles ?
Hard Probes, Stellenbosh, Nov. 2013 From Jet Quenching to Wave Turbulence Edmond Iancu 5 / 23

Energy transport at large angles

Just a little fraction of the ‘missing energy’ is recovered when gradually
increasing the jet opening : most of the energy is lost at large angles
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What is the mechanism for energy transport at large angles ?
Hard Probes, Stellenbosh, Nov. 2013 From Jet Quenching to Wave Turbulence Edmond Iancu 5 / 23• little energy is recovered up to large 

cone angles, R~0.8  
• striking effect due to multiple 

branching + broadening 
• Possible explanation for energy 

transfer to large angles and soft 
modes in asymmetric dijet events 
observed by CMS (2012)  
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Understanding jet modifications at 
LHC

Dijet asymmetry

✓med ⇠
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integrating D and excluding 
out-cone gluons   



Understanding jet modifications at 
LHC

Fragmentation functions

l = � lnx

• MLLA distribution for pp vacuum 
• medium-induced energy loss & 

broadening depletes energy inside 
the cone 
• responsible for dip in the ratio 

• small angle radiation due to AAO/
decoherence: novel ingredient 
• soft gluons, produced with large 

formation time :: not affected by 
broadening 

• responsible for enhancement at 
large l = shift of humpbacked 
plateau!
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• For large media: in-medium gluon branchings are 
independent: Probabilistic picture   

• Radiative corrections to this picture are important and 
can be absorbed in a renormalization of the quenching 
parameter without spoiling the probabilistic picture.  

• Phenomenology: agreement with observed nuclear 
modify. factor, FF’s and dijet asymmetry ; need for more 
detailed analysis and implementation in an event 
generator 

Summary and outlook
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Thank you !


