

CMS Experiment at LHC, CERN Data recorded: Wed Nov 10 00:09:04 2010 CEST Run/Event: 150590 / 959193 Lumi section: 227

## Recent Heavy Ion Results from CMS

Matt Nguyen, LLR—Ecole Polytechnique 26-11-13

## Exploring hot QCD w/ heavy ions

- Lattice QCD predicts a phase transition near T = 170 MeV
- High T regime accessible w/ highenergy HI collisions
- Replicates conditions of the early universe



source: www.bnl.gov

2



GDR-QCD: Heavy ions with CMS



### Evolution of a HI collision



- Soft/global observables, e.g., multiplicity, particle correlations
- Hard probes, e.g., jets, EW bosons, quarkonia

## The hard probes paradigm

- Hard scattering in vacuum
  - Well understood in pQCD
  - Measurable in pp collisions
- How does picture change w/ a hot QCD medium?







#### **Proton-lead collisions**



- Investigate initial state nuclear effects, e.g., nuclear modification to the PDFs (nPDF)
- Final-state effects in cold nuclear matter (mostly) expected to be small w.r.t. QGP effects
- Is there evidence for HI-like effects in p-Pb?







#### Particle ID in CMS



#### CMS Integrated Luminosity, PbPb, 2011, $\sqrt{s}=$ 2.76 TeV/nucleon



## LHC Run 1

# Comparable statistics for rare probes in all 3 systems

CMS Integrated Luminosity, pPb, 2013,  $\sqrt{s}=$  5.02 TeV/nucleon





GDR-QCD: Heavy ions with CMS



Centrality: classify events according to some measure of overall activity

Typically use forward detectors, well separated from region we want to study

## Collision centrality

Nuclear effects dependent strongly on collision impact parameter



Using a Glauber model, centrality is translated into collision properties: Impact parameter, # of participating nucleons ( $N_{part}$ ), # of collisions ( $N_{coll}$ ), etc.

## Nuclear modification factor (R<sub>AA</sub>)

$$R_{AA} = \frac{\sigma_{pp}^{inel}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}}{d^2 \sigma_{pp}} \frac{d \eta}{d r_T}$$

- R<sub>AA</sub> quantifies departure from expectation based on pp collisions
- Colorless probes are free-streaming
- Rate of high p<sub>T</sub> charged particles is strongly suppressed → jet quenching
- So are hadrons from heavy flavor



Yield in AA

Yield expected from pp

## Charged particle suppression

- Turn-on of suppression from SPS to LHC
- Constrains models of parton energy loss
- Limitations:
  - Path length biasedConvoluted with FF
- Reconstructed jets provide a more direct window into the dynamics of partonmedium interactions





#### Dijet in a Pb-Pb collision



- Clean access to jets in HI possible for the 1<sup>st</sup> time at the LHC
- Jet quenching manifest as large p<sub>T</sub> asymmetry visible e-by-e
- Subtraction of Pb-Pb underlying event is non-trivial



## Dijet $p_T$ imbalance



- Gradual turn on of quenching with increased collision centrality
- Effect persists out to largest values of jet p<sub>T</sub>
- Difference in ratio between data and MC does not depend strongly on p<sub>T</sub>
- Caveat: Not corrected for jet resolution effects

## "Fragmentation functions"

 $z = track p_T / reconstructed jet p_T (R=0.3)$ 



Relatively mild distortion of the jet fragmentation pattern inside the jet cone

CMS-PAS-HIN-12-013

**GDR-QCD:** Heavy ions with CMS





PRC84 (2011) 024906





The momentum difference in the dijet is balanced by low  $p_T$  particles outside the jet cone



## Dijets in p-Pb

#### CMS-PAS-HIN-13-001



No evidence of jet quenching even in the events with the largest activity in the HF

## Nuclear parton distributions

Source: François Arleo and Jean-Philippe Guillet http://lapth.cnrs.fr/npdfgenerator/



- Distributions of partons in nuclei are modified by ~10% for the relevant Q<sup>2</sup>
- Poor agreement among various global fit analyses

## Dijet pseudorapidity



#### Dijet sensitivity to nPDF

#### CMS-PAS-HIN-13-001



- Compared to NLO w/ CT10 (pp), vs including nuclear effects w/ EPS09
- Shape comparison only

## Charged particle RpA

- Larger enhancement than expected from anti-shadowing
- Some tension with ATLAS jet results





#### Dimuons in CMS



Quarkonium Dissociation







- Onia states thought to melt due to color screening
- Melting temperature depends on binding energy
  - $\circ$  ~ T<sub>c</sub> for Y(2s), Y(3s)
  - $_{\odot}~\sim$  4 T\_c for Y (1s)
- Lineshape in Pb-Pb shows increase in Y(1s)/[Y(2s)+Y(3s)]

#### PRL 109 (2012) 222301



22

#### Sequential Melting?



- Large suppression of excited states
- Ground states unmelted, except for feed-down?



## Upsilon in p-Pb

- Ratio of states shows surprising dependence on multiplicity in pp/p-Pb
- Need more Pb-Pb data to see if trend varies smoothly
- Not yet clear what impact multiplicity dependence has on interpretation of Pb-Pb





### **Azimuthal Flow**



- v2/ε sensitive to shear viscosity of system
- Only weak dependence on  $\sqrt{s}$  via EOS
- Elliptic flow scales with charged particle density → close to hydro limit, low visc.

Azimuthal dependence of particle yield w.r.t. to reaction plane is expanded in a Fourier series:

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n\left(\varphi - \Psi_R\right)\right]\right)$$

- $\Psi_{\rm R}$  is the 'reaction plane angle'
- v<sub>2</sub> is known as 'elliptic flow'



## Long-range correlations (Pb-Pb)

#### PLB 724 (2013) 213



- Large acceptance permits correlations studies over broad range
- Long-range correlations must correspond to early times
- Require hydro. flow to propagate to final state (and/or CGC)





- CMS has dedicated triggers for high multiplicity events
- Ridge in high multiplicity pp collisions one of the most surprising results from the LHC so far
- Also seen in high multiplicity pPb collisions
- Are these systems really big enough to thermalize?
- If so, can we find evidence for QGP-like effects?

## **Triangular Flow**

- Fluctuations in overlap shape give rise to triangular flow component
- As with v2, requires hydro to propagate to final state
- Surprisingly large in p-Pb ridge and scales with overall multiplicity
- Evidence of hydro-like behavior, but hard to reproduce w/ models



### Conclusions

- LHC Run 1 has brought new opportunities to HI
  - Clean jet measurements
  - Access to bottomonia (and open beauty)
  - Long-range correlations
  - Lots more I did not discuss ...
- Lots of information about the QGP to digest
- Latest p-Pb data
  - Constrains nPDFs and cold nuclear matter effects
  - Opens new puzzles with surprisingly HI-like behavior
- Much more to come after LS1with an order of magnitude more data expected!

![](_page_29_Picture_0.jpeg)

## Onia in p-Pb (N<sub>tracks</sub> vs HF E<sub>T</sub>)

IR

![](_page_30_Figure_3.jpeg)

#### Charged particle η asymmetry in p-Pb

![](_page_31_Figure_3.jpeg)