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Frontiers of subatomic physics
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High energy easy to identify

!3

LHC	
  
Higgs	
  boson	
  discovery	
  
Production	
  of	
  new	
  	
  
particles	
  and	
  stuff	
  

!
Next:	
  ILC
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Breaking through frontiers

!4

Freeman Dyson on 16 discoveries awarded the 
Nobel Prize between 1945 and 2008: 

“four discoveries on the energy frontier, four on 
the rarity frontier, eight on the accuracy frontier. 
Only a quarter of the discoveries were made on 
the energy frontier, while half of them were made 
on the accuracy frontier. For making important 
discoveries, high accuracy was more useful than 
high energy.”  

(Freeman Dyson, review of The Lightness of Being, F. Wilczek, 
The New York Review of Books, April 2009) 
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Precision frontier and the stumbling stone
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Testing	
  SM	
  at	
  low	
  	
  
energies,	
  quantum	
  
loop	
  corrections	
  	
  

sin2θW	
  	
  
EDM	
  

Flavor	
  physics	
  
Atomic	
  tests

Low-­‐Energy	
  Strong	
  Interaction:	
  
non-­‐perturbative	
  QCD	
  

structure	
  info	
  (FFs,	
  GPDs,	
  PDFs)

proton	
  charge	
  radius	
  puzzle

(g-­‐2)μ	
  

[from Cigriliano & Ramsey-Musolf, 
Ann.Rev.Mod.Sci(2013)]  
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QCD coupling
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For                    non-perturbative phenomena: 	


       color confinement, 	


       spontaneous chiral symmetry breaking,	


       generation of nucleon mass, ... 

Q ⇠ ⇤QCD

For                            : asymptotic freedom
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QFTs of low-energy strong interaction
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Lattice QCD Chiral perturbation theory (ChPT),  
a.k.a Chiral Effective-Field Theory (ChEFT)

… turning the tumble stone into stepping stones
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ChPT basic facts
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✦	
  S.	
  Weinberg,	
  Phenomenological	
  Lagrangians,	
  Physica	
  (1979):	
  	
  	
  
	
  	
  	
  	
  	
  	
  aimed	
  to	
  obtain	
  quantum	
  corrections	
  to	
  PCAC	
  (LETs	
  +	
  chiral	
  symmetry),	
  
	
  	
  	
  	
  	
  	
  derived	
  the	
  Effective	
  Field	
  Theory	
  framework	
  
!
✦	
  Gasser	
  &	
  Leutwyler	
  (1984,	
  1985)	
  worked	
  out	
  ChPT	
  in	
  the	
  meson	
  sector.	
  
!
✦‘Chiral’	
  and	
  ‘Perturbative’	
  go	
  together:	
  	
  
	
  	
  	
  	
  	
  pions	
  are	
  Goldstone	
  bosons	
  of	
  spontaneous	
  ChSB,	
  
	
  	
  	
  	
  	
  interaction	
  goes	
  with	
  powers	
  of	
  energy,	
  vanishes	
  at	
  E=0	
  in	
  the	
  chiral	
  limit.	
  
	
  	
  	
  	
  	
  perturbative	
  expansion	
  in	
  energy	
  and	
  pion	
  mass	
  (but	
  not	
  a	
  series	
  
expansion!)	
  
!
✦	
  	
  Most	
  general	
  Lagrangian	
  (allowed	
  by	
  symmetries),	
  hence	
  infinitely	
  many	
  
constants	
  (LECs)	
  parametrising	
  the	
  short-­‐range	
  physics.	
  
!

✦	
  Predictive	
  provided:	
  Hierarchy	
  of	
  scales	
  and	
  Naturalness	
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Baryon ChPT
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pµ

4⇡f⇡
, or

|~p|
4⇡f⇡

,
m⇡

4⇡f⇡

E (GeV)

1

0.1 

0.3

4⇡f⇡

MN

m⇢

m⇡

M� �MN

The 1st nucleon excitation — Delta(1232) is within reach 
of chiral perturbation theory (293 MeV excitation energy is 
a light scale) 

Include into the chiral effective Lagrangian as explicit dof 

Power-counting for Delta contributions (SSE,  ``delta-
counting”) depends on what chiral order is assigned to the 
excitation scale. 

Not just the pion cloud: Delta(1232) excitation

Jenkins & Manohar, PLB (1991) 
Hemmert, Holstein, Kambor, JPhysG (1998) 
V.P. & Phillips, PRC (2003) Δ (1232) M1/E2
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Example: Nucleon mass
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V. Pascalutsa, M. Vanderhaeghen / Physics Letters B 636 (2006) 31–39 33

Fig. 1. The nucleon and ∆ self-energy contributions considered in this Letter. Double lines represent the ∆ propagators.

Point (ii), in particular, allows us to use simpler forms for the spin-3/2 propagator. Indeed, as can be read off Eq. (1), the
propagator of the massive spin-3/2 field is the inverse of the free-field operator:

(4)
(
S−1)

αβ
(p) = γαβµpµ − mγαβ ,

where p = i∂ , and m denotes the mass. However, using the gauge symmetry under (3) and hence the spin-3/2 constraints: ∂ · ψ =
0 = γ · ψ , one can obtain other, equivalent, forms of the propagator [22]. One can, for example, derive the following gauge-fixing
term:

(5)Lg.f. = −iζ(∂ · ψ̄γ · ψ − ψ̄ · γ ∂ · ψ),

with the gauge-fixing parameter ζ , a real number. Upon adding this term, the free-field operator Eq. (4) becomes:

(6)
(
S−1)

αβ
(p) = (/p − m)γαβ + (1 + ζ )(γαpβ − γβpα) = γαβ(/p − m) − (1 − ζ )(γαpβ − γβpα),

and it is not difficult to find its inverse:

(7)Sαβ(p) = /p + m

m2 − p2

[
gαβ − 1

3
γ αγ β + (1 − ζ )(ζ/p + m)

3(ζ 2p2 − m2)

(
γ αpβ − γ βpα

)
+ 2(1 − ζ 2)pαpβ

3(ζ 2p2 − m2)

]
.

Some simple gauges are:

(8)ζ = 1 : Sαβ(p) = /p + m

m2 − p2

(
gαβ − 1

3
γ αγ β

)
,

(9)ζ = −1 : Sαβ(p) =
(

gαβ − 1
3
γ αγ β

)
/p + m

m2 − p2 ,

(10)ζ = ∞ : Sαβ(p) = /p + m

m2 − p2P
(3/2)αβ(p),

where

(11)P(3/2)αβ(p) = 2
3

(
gαβ − pαpβ

p2

)
+ /p

3p2 γ αβµpµ

is the covariant spin-3/2 projection operator. Obviously, ζ = 0 corresponds with the usual Rarita–Schwinger propagator. It is
interesting to observe that for ζ ̸= 0 the propagator has a smooth massless limit. We would like to stress that our results are
independent of the gauge-fixing parameter, because all the spin-3/2 couplings used here are symmetric with respect to the gauge
transformation (3).

It is unlikely that one can construct a theory where the chiral and the spin-3/2 symmetries would be manifest in a closed form.
However, the procedure where the chiral Lagrangian with no spin-3/2 gauge symmetry at a given order is replaced by an equivalent,
to that order, Lagrangian with spin-3/2 gauge symmetry is feasible [21]. Thus, both symmetries can be realized in the effective-field
theory sense.

In the ζ = ∞ gauge, the ∆ self-energy takes a simple form:

(12)Σαβ(p) = Σ(/p)P(3/2)
αβ (p),

where Σ(/p) has the spin-1/2 Lorentz structure. Thus, both nucleon and ∆-isobar self-energies can be expressed in the same Lorentz
form, without complications of the lower-spin sector of the spin-3/2 theory considered in [23,24].

Furthermore, in explicit calculations we find that this form for the nucleon and the ∆ can be written in a universal expression.
Namely, the one-pion-loop contribution of a baryon B ′ to the self-energy of a baryon B , see Fig. 1, can generically be written as:

(13)ΣB(/p) = CBB ′

3(2fπMB)2

1
i

∫
d4k

(2π)4

1
k2 − m2

π

/p − /k + MB ′

(p − k)2 − M2
B ′

[
p2k2 − (p · k)2],

L =

X

k

L(k), k = # of pion derivatives and masses

L(1)
�N =

¯N(iD/ �
�

MN +

�
gA aµ�µ�5)N

=

¯N
⇣
i⇤/ �

�
MN +

�
gA

2f�
(⇤µ⇥)�µ�5

⌘
N + O(⇥2

)

L(2)
�N = 4

�
c1N m2

�
¯N N + . . .

Power-counting: 

MN =
�

MN � 4
�
c1N m2

� �

Vk # of vertices from L(k)

L # of Loops

N� # of internal pions

NN # of internal nucleons

O(p3)
+  ...

LECs

+  ...MN =
�

MN � 4
�
c1N m2

� �
g2

A

(4�f�)2
⇣3�

2
m3

� + O(m4
�)

⌘

pre
dicti

on o
f C

hPT

physical

world

[V.P. & Vanderhaeghen, PLB (2006)]
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Heavy-baryon ChPT? No!
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V. Pascalutsa, M. Vanderhaeghen / Physics Letters B 636 (2006) 31–39 33

Fig. 1. The nucleon and ∆ self-energy contributions considered in this Letter. Double lines represent the ∆ propagators.

Point (ii), in particular, allows us to use simpler forms for the spin-3/2 propagator. Indeed, as can be read off Eq. (1), the
propagator of the massive spin-3/2 field is the inverse of the free-field operator:

(4)
(
S−1)

αβ
(p) = γαβµpµ − mγαβ ,

where p = i∂ , and m denotes the mass. However, using the gauge symmetry under (3) and hence the spin-3/2 constraints: ∂ · ψ =
0 = γ · ψ , one can obtain other, equivalent, forms of the propagator [22]. One can, for example, derive the following gauge-fixing
term:

(5)Lg.f. = −iζ(∂ · ψ̄γ · ψ − ψ̄ · γ ∂ · ψ),

with the gauge-fixing parameter ζ , a real number. Upon adding this term, the free-field operator Eq. (4) becomes:

(6)
(
S−1)

αβ
(p) = (/p − m)γαβ + (1 + ζ )(γαpβ − γβpα) = γαβ(/p − m) − (1 − ζ )(γαpβ − γβpα),

and it is not difficult to find its inverse:

(7)Sαβ(p) = /p + m

m2 − p2

[
gαβ − 1

3
γ αγ β + (1 − ζ )(ζ/p + m)

3(ζ 2p2 − m2)

(
γ αpβ − γ βpα

)
+ 2(1 − ζ 2)pαpβ

3(ζ 2p2 − m2)

]
.

Some simple gauges are:

(8)ζ = 1 : Sαβ(p) = /p + m

m2 − p2

(
gαβ − 1

3
γ αγ β

)
,

(9)ζ = −1 : Sαβ(p) =
(

gαβ − 1
3
γ αγ β

)
/p + m

m2 − p2 ,

(10)ζ = ∞ : Sαβ(p) = /p + m

m2 − p2P
(3/2)αβ(p),

where

(11)P(3/2)αβ(p) = 2
3

(
gαβ − pαpβ

p2

)
+ /p

3p2 γ αβµpµ

is the covariant spin-3/2 projection operator. Obviously, ζ = 0 corresponds with the usual Rarita–Schwinger propagator. It is
interesting to observe that for ζ ̸= 0 the propagator has a smooth massless limit. We would like to stress that our results are
independent of the gauge-fixing parameter, because all the spin-3/2 couplings used here are symmetric with respect to the gauge
transformation (3).

It is unlikely that one can construct a theory where the chiral and the spin-3/2 symmetries would be manifest in a closed form.
However, the procedure where the chiral Lagrangian with no spin-3/2 gauge symmetry at a given order is replaced by an equivalent,
to that order, Lagrangian with spin-3/2 gauge symmetry is feasible [21]. Thus, both symmetries can be realized in the effective-field
theory sense.

In the ζ = ∞ gauge, the ∆ self-energy takes a simple form:

(12)Σαβ(p) = Σ(/p)P(3/2)
αβ (p),

where Σ(/p) has the spin-1/2 Lorentz structure. Thus, both nucleon and ∆-isobar self-energies can be expressed in the same Lorentz
form, without complications of the lower-spin sector of the spin-3/2 theory considered in [23,24].

Furthermore, in explicit calculations we find that this form for the nucleon and the ∆ can be written in a universal expression.
Namely, the one-pion-loop contribution of a baryon B ′ to the self-energy of a baryon B , see Fig. 1, can generically be written as:

(13)ΣB(/p) = CBB ′

3(2fπMB)2

1
i

∫
d4k

(2π)4

1
k2 − m2

π

/p − /k + MB ′

(p − k)2 − M2
B ′

[
p2k2 − (p · k)2],

MN =
�

MN � 4
�
c1N m2

� �
O(p3)

+  ...

LECs

where                 contains the UV-divergence, removed in MS-bar:   
remaining       “complicates life a lot” [GSS88].  Violation of power counting?!!
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Fig. 1. The nucleon and ∆ self-energy contributions considered in this Letter. Double lines represent the ∆ propagators.

Point (ii), in particular, allows us to use simpler forms for the spin-3/2 propagator. Indeed, as can be read off Eq. (1), the
propagator of the massive spin-3/2 field is the inverse of the free-field operator:

(4)
(
S−1)

αβ
(p) = γαβµpµ − mγαβ ,

where p = i∂ , and m denotes the mass. However, using the gauge symmetry under (3) and hence the spin-3/2 constraints: ∂ · ψ =
0 = γ · ψ , one can obtain other, equivalent, forms of the propagator [22]. One can, for example, derive the following gauge-fixing
term:

(5)Lg.f. = −iζ(∂ · ψ̄γ · ψ − ψ̄ · γ ∂ · ψ),

with the gauge-fixing parameter ζ , a real number. Upon adding this term, the free-field operator Eq. (4) becomes:

(6)
(
S−1)

αβ
(p) = (/p − m)γαβ + (1 + ζ )(γαpβ − γβpα) = γαβ(/p − m) − (1 − ζ )(γαpβ − γβpα),

and it is not difficult to find its inverse:

(7)Sαβ(p) = /p + m

m2 − p2

[
gαβ − 1

3
γ αγ β + (1 − ζ )(ζ/p + m)

3(ζ 2p2 − m2)

(
γ αpβ − γ βpα

)
+ 2(1 − ζ 2)pαpβ

3(ζ 2p2 − m2)

]
.

Some simple gauges are:

(8)ζ = 1 : Sαβ(p) = /p + m

m2 − p2

(
gαβ − 1

3
γ αγ β

)
,

(9)ζ = −1 : Sαβ(p) =
(

gαβ − 1
3
γ αγ β

)
/p + m

m2 − p2 ,

(10)ζ = ∞ : Sαβ(p) = /p + m

m2 − p2P
(3/2)αβ(p),

where

(11)P(3/2)αβ(p) = 2
3

(
gαβ − pαpβ

p2

)
+ /p

3p2 γ αβµpµ

is the covariant spin-3/2 projection operator. Obviously, ζ = 0 corresponds with the usual Rarita–Schwinger propagator. It is
interesting to observe that for ζ ̸= 0 the propagator has a smooth massless limit. We would like to stress that our results are
independent of the gauge-fixing parameter, because all the spin-3/2 couplings used here are symmetric with respect to the gauge
transformation (3).

It is unlikely that one can construct a theory where the chiral and the spin-3/2 symmetries would be manifest in a closed form.
However, the procedure where the chiral Lagrangian with no spin-3/2 gauge symmetry at a given order is replaced by an equivalent,
to that order, Lagrangian with spin-3/2 gauge symmetry is feasible [21]. Thus, both symmetries can be realized in the effective-field
theory sense.

In the ζ = ∞ gauge, the ∆ self-energy takes a simple form:

(12)Σαβ(p) = Σ(/p)P(3/2)
αβ (p),

where Σ(/p) has the spin-1/2 Lorentz structure. Thus, both nucleon and ∆-isobar self-energies can be expressed in the same Lorentz
form, without complications of the lower-spin sector of the spin-3/2 theory considered in [23,24].

Furthermore, in explicit calculations we find that this form for the nucleon and the ∆ can be written in a universal expression.
Namely, the one-pion-loop contribution of a baryon B ′ to the self-energy of a baryon B , see Fig. 1, can generically be written as:

(13)ΣB(/p) = CBB ′

3(2fπMB)2

1
i

∫
d4k

(2π)4

1
k2 − m2

π

/p − /k + MB ′

(p − k)2 − M2
B ′

[
p2k2 − (p · k)2],

L =
1

✏
+ . . .

=

3g2A
2(4⇡f⇡)2

n

�M3
N L+MN (1� L)m2

⇡ � m3
⇡

⇣

q

1�m2
⇡/4M

2
N arccos

m⇡

2MN
+

m4
⇡

4MN
ln

m2
⇡

M2
N

⌘o

L = 0

m2
⇡

Gasser, Sainio & Svarc, NPB (1988);  ... 

Led to Heavy-Baryon ChPT [Jenkins & Manohar, PLB (1991)] which for a decade  
was considered as the only consistent formulation.  
Drawback: not working     — 1. removes          in dimreg but not in cutoff  schemes, 
2. demotes important contributions to “higher-orders” 

m2
⇡

Fortunately, HB not needed:          term removed by renormalization of  the LEC.m2
⇡

Japaridze & Gegelia (1999), published in (2003)!
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Relevance to low-energy/precision frontiers
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ChPT gives predictions*, i.e. free-parameter free results, for: 
!
1. Nucleon polarizabilities 
!
2. Nucleon structure effects in hydrogen Lamb shift beyond 

the charge radius 

*Predictions of HBChPT differ from BChPT
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ChPT of Compton scattering off protons

!13

size of the red blob

LO

NLO NNLO

Lensky & V.P., EPJC (2010)  
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Unpolarized cross sections
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Data points:

MAMI/TAPS 
(2001)

SAL (1993)

Illinois (1991)

Curves:

Klein-Nishina

!
Born + WZW

!
+ p-qube

!
Total NNLO

Lensky & V.P.,EPJC (2010)]
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Proton polarizabilities
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Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering

Nadiia Krupina and Vladimir Pascalutsa
PRISMA Cluster of Excellence Institut für Kernphysik, Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany

(Received 3 April 2013)

1 We propose to determine the magnetic dipole polarizability of the proton from the beam asymmetry of

low-energy Compton scattering based on the fact that the leading non-Born contribution to the asymmetry

is given by the magnetic polarizability alone; the electric polarizability cancels out. The beam asymmetry

thus provides a simple and clean separation of the magnetic polarizability from the electric one.

Introducing polarizabilities in a Lorentz-invariant fashion, we compute the higher-order (recoil) effects

of polarizabilities on beam asymmetry and show that these effects are suppressed in forward kinematics.

With the prospects of precision Compton experiments at the Mainz Microtron and High Intensity Gamma

Source facilities in mind, we argue why the beam asymmetry could be the best way to measure the elusive

magnetic polarizability of the proton.

DOI: PACS numbers: 13.60.Fz, 14.20.Dh, 25.20.Dc

The current Particle Data Group (PDG) [1] values of the
electric- and magnetic-dipole polarizabilities of the proton
[2,3], i.e.,

!E1 ¼ ð12:0# 0:6Þ % 10&4 fm3; (1a)

"M1 ¼ ð1:9# 0:5Þ % 10&4 fm3 (1b)

are in significant disagreement with the most recent post-
dictions of chiral effective field theory [4,5], as can be seen
in Fig. 1. The state-of-the-art chiral effective field theory
calculations, based on either the baryon (B) or heavy-
baryon (HB) chiral perturbation theory (ChPT) with octet
and decuplet fields [6], are in excellent agreement with the
experimental Compton-scattering cross sections, but not
necessarily in agreement with the polarizabilities extracted
from these data by the experimental groups, cf. [7] for
review. The situation is becoming more acute as the
demand for precise knowledge of nucleon polarizabilities
is growing; they are for instance the main source of uncer-
tainty in the extraction of the proton charge radius from the
muonic hydrogen Lamb shift (see [8] for a recent review).

A likely source of these discrepancies is an underesti-
mate of model dependence in the extraction of polarizabil-
ities from Compton-scattering data. In principle, one
should opt for a model-independent extraction, based on
the low-energy expansion (LEX) of Compton-scattering
observables, where the leading-order terms, beyond the
Born term, are expressed through polarizabilities. For ex-
ample, the non-Born part of the unpolarized differential
cross section for Compton scattering off a target with mass
M and charge Ze is given by [2]

d#ðNBÞ

d!L
¼ &Z2!em

M

!
$0

$

"
2
$$0½!E1ð1þ cos2%LÞ

þ 2"M1 cos%L) þOð$4Þ; (2)

where $ ¼ ðs&M2Þ=2M and $0 ¼ ð&uþM2Þ=2M are,
respectively, the energies of the incident and scattered

photon in the lab frame, %L (d!L ¼ 2& sin%Ld%L) is the
scattering (solid) angle; s, u, and t ¼ 2Mð$0 & $Þ are the
Mandelstam variables; and !em ¼ e2=4& is the fine-
structure constant. Hence, given the exactly known Born
contribution [9] and the experimental angular distribution
at very low energy, one could in principle extract the
polarizabilities with a negligible model dependence. In
reality, however, in order to resolve the small polarizability
effect in the tiny Compton cross sections, most of the
measurements are done at energies exceeding 100 MeV,
i.e., not small compared to the pion mass m&. It is m&, the
onset of the pion-production branch cut, that severely
limits the applicability of a polynomial expansion in

-2
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FIG. 1 (color online). The scalar polarizabilities of the proton.
Magenta blob represents the PDG summary [1]. Experimental
results are from Federspiel et al. [15], Zieger et al. [16],
MacGibbon et al. [17], and TAPS [18]. ‘‘Sum Rule’’ indicates
the Baldin sum rule evaluations of !E1 þ "M1 [18] (broader
band) and [19]. ChPT calculations are from [4] (B'PT—red
blob) and the ‘‘unconstrained fit’’ of [5] (HB'PT—blue ellipse).

P HY S I CA L R EV I EW LE T T E R S

1 ! 2013 American Physical Society 1

!
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from 2012 edition (purple) to 

2013 on-line edition (orange) 
 

d
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c
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b
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#
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E
$
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NNLO B%PT

MAMI 01

SAL 93

�M1 = (1.9± 0.5)⇥ 10�4 fm3 [PDG]

�M1 = (4.0± 0.7)⇥ 10�4 fm3 [BChPT@NNLO]
BChPT	
  -­‐	
  Lensky	
  &	
  V.P.,	
  EPJC(2010)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
HBChPT	
  -­‐	
  Griesshammer,	
  McGovern,	
  
Phillips,	
  EPJA	
  (2013)	
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Extracting polarizabilities from angular dep.
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From linear beam asymmetry
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⌃
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d�|| + d�?

LEX

= ⌃

(Born)

3

� 4�M1

Z2↵em

cos ✓ sin2 ✓

(1 + cos

2 ✓)2
!2

+O(!4

)

Krupina & V.P, PRL (2013)
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New Mainz data for Compton beam asymmetry

!18

  

Beam asymmetry Σ
3
 : Preliminary results

17

Eγ = 120 -140 MeV

Very Preliminary!

Curves: N. Krupina, V. Pascalutsa  [PRL 110, 262001 (2013)]

V. Sokhoyan, E. Downie et al. 
[A2 Coll.]

Data taken:  28.05. – 17.06.2013, 327 h

first data on this 
observable below pion 
production threshold! 

!
better precision needed!!
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Predictions of HBChPT vs BChPT
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HBChPT@LO
Bernard, Keiser, Meissner 

Int J Mod Phys(1995)

Let us emphasize that we do not include the errors due to the uncertainty in the values
of parameters in Table II, or due to the O(p5/∆2) effects which stem from graphs with two
∆ propagators. Our errors are thus underestimated, however they can directly serve as an
indicator of sensitivity to the polarizability LECs at O(p4).

IV. PROTON POLARIZABILITIES

The chiral-loop contribution to scalar polarizabilities of the proton which arise from the
NNLO calculation of the Compton amplitude is given in the Appendix A. In addition, we
have the tree-level ∆(1232) contribution from graphs (14) in Fig. 4 and its crossed, given
by [43]:

α (∆-excit.) = − 2e2g2
E

4π(MN + M∆)3
≃ −0.1 , (28)

β (∆-excit.) =
2e2g2

M

4π(MN + M∆)2∆
≃ 7.1 . (29)

Here and in what follows the numerical values are given in the units of 10−4 fm3.
The numerical composition of the full result thus looks as follows:

α = 6.8︸︷︷︸
O(p3)

+ (−0.1) + 4.1︸ ︷︷ ︸
O(p4/∆)

= 10.8 , (30)

β = −1.8︸︷︷︸
O(p3)

+ 7.1 − 1.3︸ ︷︷ ︸
O(p4/∆)

= 4.0 . (31)

As explained above, a natural estimate of O(p4) contributions yields an uncertainty of at
least ±0.7 on these values. In Fig. 5 this result, shown by the red blob, is compared with
the empirical information, and with the ∆-less O(p4) HBχPT result of Beane et al. [42].

We can clearly see a few-sigma discrepancy of our result with the TAPS-MAMI deter-
mination of polarizabilities [9]. On the other hand, as shown in the next section, our result
agrees with TAPS data for the Compton differential cross sections. Of course we compare
with the data at the lower energies end (below the pion threshold) where polarizabilities
play the prominent role. The extraction of the polarizabilities in [9] has also been influenced
by data above the ∆-resonance region to which we cannot compare. Clearly an extraction
of scalar polarizabilities based on the data of 400 MeV and higher could be affected by un-
controlled model dependencies and needs to be avoided. Excluding the higher-energy data
from the TAPS analysis could help to resolve the apparent discrepancy between the theory
and experiment in Fig. 5.

In Fig. 6 we show the pion mass dependence of proton polarizabilities in both BχPT
and HBχPT. The difference between the two for the magnetic polarizability (lower panel)
at O(p3) is stunning (compare the blue dashed and violet dotted curves). The region of
applicability of the HB expansion is apparently limited here to essentially the chiral limit,
mπ → 0. For any finite pion mass, the BχPT and HBχPT results come out to be of a similar
magnitude but of the opposite sign. Similar picture is observed for the π∆ loops arising at
O(p4/∆). In fact, we have checked that in the limit of vanishing ∆-nucleon mass splitting
(∆ → 0), the considered πN and π∆ loops give (up to the spin-isospin factors) the same
result.

13

BChPT@NLO
Lensky & V.P., EPJC (2010)

Bernard, Keiser, Meissner 
PRL(1991)

diamagneticparamagnetic

Effective theory of the !„1232… resonance in Compton scattering off the nucleon
Vladimir Pascalutsa* and Daniel R. Phillips†

Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
!Received 4 December 2002; published 7 May 2003"

We formulate a new power-counting scheme for a chiral effective-field theory of nucleons, pions, and #s.
This extends chiral perturbation theory into the #-resonance region. We calculate nucleon Compton scattering
up to next-to-leading order in this theory. The resultant description of existing $p cross-section data is very
good for photon energies up to about 300 MeV. We also find reasonable numbers for the spin-independent
polarizabilities %p and &p .

DOI: 10.1103/PhysRevC.67.055202 PACS number!s": 14.20.Dh, 12.39.Fe, 13.60.Fz, 25.20.Dc

I. INTRODUCTION

Compton scattering on the proton ($p) and the deuteron
($D) provides a clean and unique probe of nucleon electro-
magnetic structure, revealing information different to that
obtained in electron scattering. During the last decade a
number of excellent experimental programs have been dedi-
cated to these two processes !see Refs. '1–5( and '6–10(,
respectively". At low photon energies, these experiments
probe the static properties of the nucleon, such as its electric
charge, magnetic moment, and polarizabilities. Above the
pion-production threshold, the process becomes dominated
by the excitation of resonances, most prominently the
#(1232) isobar. Many theoretical methods aim at under-
standing this process in both the low-energy and the reso-
nance region. In particular, significant progress has been
made recently using dispersion relations '11,12( and effec-
tive Lagrangian models '13–15(. On the other hand, previ-
ous calculations using chiral perturbation theory ()PT) ap-
pear to work only at low photon energies—energies at or
below the pion-production threshold '16,17(. This present
study attempts to extend these )PT calculations above the
pion threshold and into the #-resonance region.
In the low-energy regime, )PT seems to work extremely

well. At next-to-leading order !NLO", i.e., third order in
small momenta '!O(q3)( , heavy-baryon !HB" )PT for the
electric and magnetic polarizabilities predicts '18,19(:

%p!%n!
5*%

6m*
! gA
4* f*

" 2!12.2"10#4 fm3, !1"

&p!&n!
*%

12m*
! gA
4* f *

" 2!1.2"10#4 fm3, !2"

where %!e2/4*#1/137, gA#1.26, f*#93 MeV, and m*

#139 MeV.1 Since there are no Compton counterterms
present at O(q3), this is a genuine prediction of )PT—a
prediction which, at least for the proton, is in remarkable
agreement with recent extractions of these quantities from
low-energy data, e.g., Ref. '20(:

%p!!12.1$1.1$0.5""10#4 fm3, !3"

&p!!3.2$1.1$0.1""10#4 fm3. !4"

Here the first error is statistical, and the second one repre-
sents the theory error of the fit to data.
However, the agreement of the NLO HB)PT prediction

with the experimental $p cross-section data is good only up
to photon energies +#100 MeV '16(. The recent NNLO
'O(q4)( calculation '17( agrees with experiment to slightly
higher energies, but above +#120 MeV significant discrep-
ancies begin to appear, most notably at backward angles.
This is perhaps not surprising, since the #-isobar excitation
is not included explicitly in this chiral expansion. And, as we
shall argue, the breakdown scale of )PT without an explicit
# is set essentially by the #-nucleon mass difference:

#,M##MN-293 MeV. !5"

Thus, to extend the region of )PT applicability to +.# , the
# must be included as an explicit degree of freedom.
The # contribution for the Compton amplitude had al-

ready been analyzed using chiral effective Lagrangians with
explicit #s in Refs. '21–23(. These studies focused mainly
on nucleon polarizabilities. The predictions made in Refs.
'19,21,22( are obscured by off-shell ambiguities, in particu-
lar by the so-called off-shell parameters that control the in-
famous spin-1/2 sector of the spin-3/2 # field. In a ‘‘reason-
able’’ range for these parameters the # contribution to &p

(#)

varies between 0 and 14"10#4fm3 '22(. In contrast, Hem-
mert et al. '23(, to next-to-leading order in their small scale
expansion !SSE" '24(, found a result which was independent

*Email address: vlad@phy.ohiou.edu
†Email address: phillips@phy.ohiou.edu

1Throughout this paper the designations LO, NLO, etc. refer to the
order in the $N amplitude. These one-loop results are, strictly
speaking, leading-order predictions for %p and &p , but we refer to
them as next-to-leading order !NLO" since Eq. !1" is derived by
considering the NLO result for the nucleon Compton amplitude.

PHYSICAL REVIEW C 67, 055202 !2003"

0556-2813/2003/67!5"/055202!15"/$20.00 ©2003 The American Physical Society67 055202-1

HBChPT@NLO:	
  	
  

The	
  Delta	
  contribution	
  is	
  
accompanied	
  by	
  “promoted”	
  LECs,	
  
hence	
  not	
  predictive	
  

Griesshammer & Hemmert (2004) 
Griesshammer, McGovern, Phillips (2012)

Lattice	
  QCD	
  data	
  expected	
  soon



Vladimir Pascalutsa — NUCLEON STRUCTURE — Annual GDR-PH meeting — Saclay, Nov 25-27

Discoveries relevant to modern precision frontier
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The Nobel Prize in Physics 1955	


!
Willis Eugene Lamb	


"for his discoveries concerning the fine structure of the hydrogen spectrum"	



!
Polykarp Kusch	


"for his precision determination of the magnetic moment of the electron"

The Nobel Prize in Physics 1961	


!
Robert Hofstadter	


"for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved 
discoveries concerning the structure of the nucleons"

http://www.nobelprize.org/nobel_prizes/physics/laureates/1955/
http://www.nobelprize.org/nobel_prizes/physics/laureates/1955/lamb-facts.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/1955/kusch-facts.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/1961/
http://www.nobelprize.org/nobel_prizes/physics/laureates/1961/hofstadter-facts.html
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The proton radii puzzle

 [fm]
ch

Proton charge radius R
0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

H spectroscopy

scatt. Mainz

scatt. JLab

p 2010µ

p 2013µ electron avg.
σ7.9 

3 ways to the proton radius
e-p scattering

H precision laser spectroscopy
µp laser spectroscopy

Pohl et al., Nature 466, 213 (2010)
Antognini et al., Science 339, 417 (2013)

A. Antognini ECT∗, Trento 01.08.2013 – p. 2
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Proton size

!22

1% error estimate comes from average of 15 measurements
Obtain line center to accuracy of width/(100 to 1000)
No specific problems known.

The electronic H-atom data
rp puzzle (3): Is H-spectroscopy wrong ?

rp from H spectroscopy: • 2S-2P transition in H (independent on R∞)
• two transitions n → n′ in H (⇒ rp and R∞)

2S1/2 -  2P1/2

2S1/2 -  2P3/2

2S1/2 -  2P1/2

1S-2S + 2S- 4S1/2

1S-2S + 2S- 4D5/2

1S-2S + 2S- 4P1/2

1S-2S + 2S- 4P3/2

1S-2S + 2S- 6S1/2

1S-2S + 2S- 6D5/2

1S-2S + 2S- 8S1/2

1S-2S + 2S- 8D3/2

1S-2S + 2S- 8D5/2

1S-2S + 2S-12D3/2

1S-2S + 2S-12D5/2

1S-2S + 1S - 3S1/2

Havg = 0.8779 +- 0.0094 fm
µp : 0.84184 +- 0.00067 fm

proton charge radius (fm)   
0.8 0.85 0.9 0.95 1

The maximal deviation from our result is ∼3σ

Systematics ∼ n3

ur ∼ 10−11 ⇔ linewidth/100

A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.12

Plot from Aldo 
Antognini

Thursday, March 14, 13

Then came a problem
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The proton radius puzzle

Measure the 2S − 2P splitting in µp

↓

determine the proton rms radius rp
(10× better )

But large discrepancy observed:
• 4σ from H spectroscopy value
• 6σ from e-proton scattering value

A. Antognini
MPQ, Garching, Germany
ETH, Zurich, Switzerland

A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.1

Thursday, March 14, 13

rE	
  =	
  0.8772	
  ±	
  0.0046	
  fm

rE	
  =	
  0.8409	
  ±	
  0.0004	
  fm

ep-­‐data	
  :	
  
CODATA	
  2010

µH:	
  	
  
	
   8σ 	
  

discrepancy

Pohl	
  et	
  al.	
  (2010)	
  
Antognini	
  et	
  al.	
  (2013)

Bernauer	
  et	
  al.	
  (2010),	
  (2013)
Zhan	
  et	
  al.	
  (2011)

The	
  discrepancy	
  translates	
  into	
  	
  
310	
  micro-­‐eV	
  deficit	
  	
  

in	
  the	
  Lamb	
  shift	
  of	
  muonic	
  hydrogen
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Theory of muonic hydrogen Lamb shift
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rp puzzle (2): Is the µp theory wrong ?

∆Eth = 206.0668(25)− 5.2275(10) r2p [meV]
Discrepancy = 0.31 meV
Theory uncertainty = 0.0025 meV
⇒ 120δ(theory) deviation?

10 -3 10 -2 10 -1 1 10 10 2

1-loop eVP
proton size
2-loop eVP

µSE and µVP
discrepancy

1-loop eVP in 2 Coul.
recoil

2-photon exchange
hadronic VP

proton SE
3-loop eVP

light-by-light

meV

Pachucki, PRA 60, 3593 (1999)
Borie, arXiv: 1103.1772-v6
Jentschura, Ann. Phys. 326, 500 (2011)
Karshenboim et al., PRA 85, 032509 (2012)

A. Antognini ECT∗, Trento 01.08.2013 – p. 13

proposed to resolve the puzzle 
De Rujula, PLB (2011) 
Miller, PLB (2013)  

!
!

calculable in ChPT  
HB ChPT: Nevado & Pineda (2008) 
BChPT: Alarcon, Lensky & V.P. 
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Lamb shift in ChPT
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Chiral perturbation theory of muonic hydrogen Lamb shift

Jose Manuel Alarcón,1 Vadim Lensky,2 and Vladimir Pascalutsa1

1

Cluster of Excellence PRISMA Institut f

¨

ur Kernphysik,

Johannes Gutenberg-Universit

¨

at, Mainz D-55099, Germany

2

Theoretical Physics Group, School of Physics and Astronomy,

University of Manchester, Manchester, M13 9PL, United Kingdom

(Dated: October 24, 2013)

The leading-order prediction of proton polarizability-like effect on the muonic hydrogen Lamb shift is ob-
tained in baryon chiral perturbation theory. The magnitude of the effect is �E(2P � 2S) ' 8µeV, which is
consistent with previous calculations based on heavy-baryon chiral perturbation theory and dispersion theory.
Our result rules out the scenarios where the ”proton charge radius puzzle” is solved by O(↵5

em) effects of proton
structure on the side of muonic hydrogen.

PACS numbers:

The ”proton charge radius puzzle” stands for the discrep-
ancy in the value of proton’s charge radius obtained form elas-
tic electron-proton scattering measurements [1] and atomic
measurements of the normal hydrogen [2] on one hand, and
the muonic hydrogen (µH) spectroscopy [3] on the other. The
discrepancy is almost 8 standard deviations (i.e., 7.7�). One
way to mend it is to find an effect which would raise the µH
Lamb shift by about 310 µeV and it has been suggested that
proton structure can produce such an effect at O(↵5

em

). Most
of the studies, however, derive a very modest effect of proton
structure beyond the charge radius.

Namely, the measured Lamb shift for the muonic hydrogen
is around 300 µeV lower than one expects from theory using
the charge radius deduced from normal hydrogen. This dif-
ference could be due to the internal electromagnetic structure
of the proton since, due to its larger mass, the muon is much
closer to the proton than the electron. Several studies have
been done investigating the effects of the internal electromag-
netic structure of the proton to the muonic hydrogen Lamb
shift. They point to a contribution of the order of -10µeV,
which is one order of magnitude smaller than needed to recon-
cile the electronic and muonic hydrogen measurements. Re-
cently, it was suggested that this difference could be accounted
for by effects of the proton magnetic polarizability at large vir-
tualities in the two photon exchange diagrams [4].

In this letter we investigate the contribution of the hadronic
structure of the proton to the muonic hydrogen Lamb shift.
They enter in the two photon exchange diagrams and are
related to the forward double virtual Compton scattering
(VVCS) on the proton. These contributions to the Lamb shift
can be parametrized in terms of the Compton tensor Tµ⌫ . This
embodies the information on the response of the proton due
to electromagnetic probes. For forward scattering, the spin-
averaged Compton tensor takes the form [5]

(b) (c)(a)

(d) (e) (f )

(g) (h) (j)

(k)

�

FIG. 1: Diagrams considered for the calculation of T1 and T2. Only
the direct process in the VVCS is shown. Double line represents the
�(1232) propagator.

Tµ⌫(P, q) =
i

8⇡m
N

Z
d4 eiq·xhp|Tjµ(x)j⌫(0)|pi

=

✓
�gµ⌫ +

qµq⌫

q2

◆
T1(⌫, Q

2)

+
1

m2
N

✓
Pµ � P · q

q2
qµ

◆✓
P ⌫ � P · q

q2
q⌫
◆
T2(⌫, Q

2), (1)

where m
N

is the nucleon mass, P and q are the proton and
photon momenta, respectively , ⌫ = P ·q/m

N

and Q2 = �q2

is the virtuality of the photons.
On the other hand, since we are interested in the O(↵5

em

)
contributions, we considered that the external muon and pro-
ton lines have zero three-momentum, which implies that ⌫ =
P · q/m

N

= q0. Corrections due to finite three-momenta are
higher orders in ↵

em

.
From this consideration, one can derive a very simple sum

rule to connect T1 and T2 to the Lamb shift correction �E
nS

[5]



Vladimir Pascalutsa — NUCLEON STRUCTURE — Annual GDR-PH meeting — Saclay, Nov 25-27

Lamb shift in terms of VVCS amplitudes

!25

In our calculation the Born part was separated by subtracting the on-shell �NN pion loop
vertex in the one-particle-reducible VVCS graphs, see diagrams (b) and (c) in Fig. 1. Focus-
ing on the O(p3) corrections (i.e., VVCS amplitude corresponding to the graphs in Fig. 1) we
have explicitly verified that the resulting NB amplitudes satisfy the dispersive sum rules [24]:

T (NB)

1

(⌫2, Q2) = T (NB)

1

(0, Q2) +
⌫2

2⇡2

Z 1

⌫0

d⌫ 0�T (⌫ 0, Q2)

⌫ 02 � ⌫2

, (11a)

T (NB)

2

(⌫2, Q2) =
1

2⇡2

Z 1

⌫0

d⌫ 0 ⌫ 0 2Q2

⌫ 02 +Q2

�T (⌫ 0, Q2) + �L(⌫ 0, Q2)

⌫ 02 � ⌫2

, (11b)

with ⌫
0

= m⇡ + (m2

⇡ + Q2)/(2Mp) the pion-production threshold, m⇡ the pion mass, and
�T (L) the tree-level cross section of pion production o↵ the proton induced by transverse
(longitudinal) virtual photons, cf. Appendix B. We hence establish that one needs to calcu-
late the ‘elastic’ contribution from the Born part of the amplitudes and the ‘polarizability’
contribution from the non-Born part, in accordance with the procedure advocated by Birse
and McGovern [13].

Substituting the O(p3) NB amplitudes into Eq. (7) we obtain the following value for the
polarizability correction:

�E(pol)

2S = �8.16 µeV. (12)

This is quite di↵erent from the corresponding HB�PT result for this e↵ect obtained by
Nevado and Pineda [11]:

�E(pol)

2S (LO-HB�PT) = �18.45 µeV. (13)

Before discussing possible reasons for this di↵erence, let us note that a much simpler formu-
lae can be obtained if we make the low-energy expansion (LEX) of the VVCS amplitude,
assuming that the photon energy in the atomic system is small compared to all other scales.

To leading order in LEX, we may neglect the ⌫ dependence in the numerator of
Eq. (7) and, after Wick-rotating q to Euclidean hyperspherical coordinates [i.e., setting
⌫ = iQ cos�, ~q = (Q sin� sin ✓ cos', Q sin� sin ✓ sin', Q sin� cos ✓)] and angular integra-
tions, we find the following expression:

�E(pol)

nS = �4↵em�
2

n

Z 1

0

dQ

Q2

w
�
Q2/4m2

`

� h
T (NB)

2

(0, Q2)� T (NB)

1

(0, Q2)
i
, (14)

with the weighting function w(⌧`) shown in Fig. 2 and given by:

w(⌧`) =
p
1 + ⌧` �p

⌧`, ⌧` =
Q2

4m2

`

. (15)

Plugging in the LO B�PT expressions from Appendix A we obtain:

�E(pol)

2S = �8.20 µeV, (16)

i.e., nearly the same as before the LEX, cf. Eq. (12). This comparison shows that the LEX
is applicable in this case, at least within the B�PT framework. In HB�PT it is not clear
whether the low-energy and heavy-baryon limits commute. By taking the heavy-baryon

5

where unpolarized, forward Doubly-Virtual 
Compton scattering (VVCS) amplitude:

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

Q (GeV)

w`(Q) =

s

1 +
Q2

4m2
`

� Q

2m`

muon

electron

w!ΤΜ"

w!Τe"

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Q2 !GeV
2"

FIG. 2: Plot of the Q2 behavior of the weighting function depending on the lepton mass. The blue
dashed line is for the case of the electron, w(⌧e), whereas the solid purple line is for the muon,
w(⌧µ).

limit in T (NB)

1

and T (NB)

2

as shown in Appendix A, we first of all reproduced the O(p3) result

of Birse and McGovern for T (NB)

1

[13], and secondly found that the T (NB)

2

term in the integral
of Eq. (14) fails to converge. Therefore, the after-LEX LO-HB�PT diverges, while the result
before LEX is finite [Eq. (13)], albeit significantly larger in the absolute value than that of
B�PT. It would be interesting to see how much of that finite result comes from Q > 1 GeV.
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I. INTRODUCTION

The eight standard-deviation (7.7�) discrepancy in the value of proton’s charge radius
obtained form elastic electron-proton scattering [1] and hydrogen spectroscopy [2] on one
hand and from the muonic hydrogen (µH) spectroscopy [3, 4] on the other, a.k.a. the ‘ proton
charge radius puzzle’ [5, 6], is yet to meet its fully agreeable solution. One way to solve it
is to find an e↵ect that would raise the µH Lamb shift by about 310 µeV, and it has been
suggested that proton structure can produce such an e↵ect at O(↵5

em) [7, 8]. Most of the
studies, however, derive an order of magnitude smaller e↵ect of proton structure beyond the
charge radius [9–15].

The O(↵5

em) e↵ects of proton structure in the Lamb shift are usually divided into the
e↵ect of (i) the 3rd Zemach moment, (ii) finite-size recoil, and (iii) polarizabilities. The first
two are sometimes combined into (i’) the ‘elastic 2�’ contribution, while the polarizability
e↵ect is often split between (ii’) the ‘inelastic 2� and (iii’) a ‘subtraction’ term, cf. Table I.
The ‘elastic’ and ‘inelastic’ 2� contributions are well-constrained by the available empirical
information on, respectively, the proton form factors and unpolarized structure functions.
The ‘subtraction’ e↵ect must be modeled, and in principle one can make up a model where
the e↵ect is large enough to resolve the puzzle [8].

In this work we observe that chiral perturbation theory (�PT) contains definitive pre-
dictions for all of the above mentioned O(↵5

em) proton structure e↵ects, hence no modeling
is needed, assuming that �PT is an adequate theory of the low-energy nucleon structure.
Some of the e↵ects were already assessed in the heavy-baryon variant of the theory (HB�PT),
namely: Nevado and Pineda [11] computed the polarizability e↵ect to leading order [i.e.,
O(p3)], while Birse and McGovern [13] computed the ‘subtraction’ term from O(p4) HB�PT.
We, on the other hand, work in the framework of a manifestly Lorentz-invariant variant of
�PT in the baryon sector, referred to as B�PT [16–19]. At least the leading order results
for nucleon polarizabilities are known to be very di↵erent in the two variants of the theory,
e.g., the proton magnetic polarizability is (in units of 10�4 fm3): 1.2 in HB�PT [20] vs. �1.8
in B�PT [21, 22]. Thus, the leading-order e↵ect of the pion cloud is paramagnetic in one
case and diamagnetic in the other (see [23] for more on HB�PT vs. B�PT). Due to these
qualitative and quantitative di↵erences it is interesting to examine the B�PT predictions for
the 2� contributions to the Lamb shift. Here we compute the polarizability e↵ect at leading
order (LO) B�PT and indeed find it significantly di↵erent from the LO HB�PT results of

Pachucki Marty- Nevado & Carlson & Birse & Gorchtein LO-B�PT

[9] nenko Pineda Vanderhaeghen McGovern et al. [this work]

(µeV) [10] [11] [12] [13] [14]

�E

(subt)

2S 1.8 2.3 �� 5.3(1.9) 4.2(1.0) 3.3(4.6) �3.0

�E

(inel)

2S �13.9 �13.8 �� �12.7(5) �12.7(5)⇤ �13.0(6) �5.2

�E

(pol)

2S �12(2) �11.5 �18.5 �7.4(2.4) �8.5 �9.7(5.6) �8.2(+1.2
�2.8)

TABLE I: Summary of the di↵erent contributions from the subtraction term (second row) and the
inelastic part (third row) to the Lamb shift (last row). The the last column corresponds to the
results obtained in this work. The rest of the columns show the estimations of di↵erent works
available in the literature. Value for the inelastic contribution superscripted with (⇤) is taken from
Ref. [12].
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Heavy-Baryon and Baryon ChPT yield different predictions.. again 
this time for proton structure corrections to Lamb shift 

!
but neither of them predicts the effect to be nearly enough to resolve the puzzle 

In our calculation the Born part was separated by subtracting the on-shell �NN pion loop
vertex in the one-particle-reducible VVCS graphs, see diagrams (b) and (c) in Fig. 1. Focus-
ing on the O(p3) corrections (i.e., VVCS amplitude corresponding to the graphs in Fig. 1) we
have explicitly verified that the resulting NB amplitudes satisfy the dispersive sum rules [24]:

T (NB)

1

(⌫2, Q2) = T (NB)

1

(0, Q2) +
⌫2

2⇡2

Z 1

⌫0

d⌫ 0�T (⌫ 0, Q2)

⌫ 02 � ⌫2

, (11a)

T (NB)

2

(⌫2, Q2) =
1

2⇡2

Z 1

⌫0

d⌫ 0 ⌫ 0 2Q2

⌫ 02 +Q2

�T (⌫ 0, Q2) + �L(⌫ 0, Q2)

⌫ 02 � ⌫2

, (11b)

with ⌫
0

= m⇡ + (m2

⇡ + Q2)/(2Mp) the pion-production threshold, m⇡ the pion mass, and
�T (L) the tree-level cross section of pion production o↵ the proton induced by transverse
(longitudinal) virtual photons, cf. Appendix B. We hence establish that one needs to calcu-
late the ‘elastic’ contribution from the Born part of the amplitudes and the ‘polarizability’
contribution from the non-Born part, in accordance with the procedure advocated by Birse
and McGovern [13].

Substituting the O(p3) NB amplitudes into Eq. (7) we obtain the following value for the
polarizability correction:

�E(pol)

2S = �8.16 µeV. (12)

This is quite di↵erent from the corresponding HB�PT result for this e↵ect obtained by
Nevado and Pineda [11]:

�E(pol)

2S (LO-HB�PT) = �18.45 µeV. (13)

Before discussing possible reasons for this di↵erence, let us note that a much simpler formu-
lae can be obtained if we make the low-energy expansion (LEX) of the VVCS amplitude,
assuming that the photon energy in the atomic system is small compared to all other scales.

To leading order in LEX, we may neglect the ⌫ dependence in the numerator of
Eq. (7) and, after Wick-rotating q to Euclidean hyperspherical coordinates [i.e., setting
⌫ = iQ cos�, ~q = (Q sin� sin ✓ cos', Q sin� sin ✓ sin', Q sin� cos ✓)] and angular integra-
tions, we find the following expression:

�E(pol)

nS = �4↵em�
2

n

Z 1

0

dQ

Q2

w
�
Q2/4m2

`

� h
T (NB)

2

(0, Q2)� T (NB)

1

(0, Q2)
i
, (14)

with the weighting function w(⌧`) shown in Fig. 2 and given by:

w(⌧`) =
p
1 + ⌧` �p

⌧`, ⌧` =
Q2

4m2

`

. (15)

Plugging in the LO B�PT expressions from Appendix A we obtain:

�E(pol)

2S = �8.20 µeV, (16)

i.e., nearly the same as before the LEX, cf. Eq. (12). This comparison shows that the LEX
is applicable in this case, at least within the B�PT framework. In HB�PT it is not clear
whether the low-energy and heavy-baryon limits commute. By taking the heavy-baryon
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More of two-photon processes
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Virtual Compton scattering (VCS)
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Summary and outlook

!30

  Nucleon structure on intersection of low-energy and precision 
frontiers: proton charge radius, polarizabilities. 
!
!
!
!
!
!
!
Chiral PT predictions, tested in polarizabilities, rule against scenarios 
where the charge radius puzzle is explained by proton structure (beyond 
the radius itself) 
!

  Stay tuned for Compton scattering (RCS, VCS, tVCS, VVCS) ongoing 
experiments at MAMI, HIGS, JLab and muon scattering at PSI ! 

Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering

Nadiia Krupina and Vladimir Pascalutsa
PRISMA Cluster of Excellence Institut für Kernphysik, Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany
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1 We propose to determine the magnetic dipole polarizability of the proton from the beam asymmetry of

low-energy Compton scattering based on the fact that the leading non-Born contribution to the asymmetry

is given by the magnetic polarizability alone; the electric polarizability cancels out. The beam asymmetry

thus provides a simple and clean separation of the magnetic polarizability from the electric one.

Introducing polarizabilities in a Lorentz-invariant fashion, we compute the higher-order (recoil) effects

of polarizabilities on beam asymmetry and show that these effects are suppressed in forward kinematics.

With the prospects of precision Compton experiments at the Mainz Microtron and High Intensity Gamma

Source facilities in mind, we argue why the beam asymmetry could be the best way to measure the elusive

magnetic polarizability of the proton.
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The current Particle Data Group (PDG) [1] values of the
electric- and magnetic-dipole polarizabilities of the proton
[2,3], i.e.,

!E1 ¼ ð12:0# 0:6Þ % 10&4 fm3; (1a)

"M1 ¼ ð1:9# 0:5Þ % 10&4 fm3 (1b)

are in significant disagreement with the most recent post-
dictions of chiral effective field theory [4,5], as can be seen
in Fig. 1. The state-of-the-art chiral effective field theory
calculations, based on either the baryon (B) or heavy-
baryon (HB) chiral perturbation theory (ChPT) with octet
and decuplet fields [6], are in excellent agreement with the
experimental Compton-scattering cross sections, but not
necessarily in agreement with the polarizabilities extracted
from these data by the experimental groups, cf. [7] for
review. The situation is becoming more acute as the
demand for precise knowledge of nucleon polarizabilities
is growing; they are for instance the main source of uncer-
tainty in the extraction of the proton charge radius from the
muonic hydrogen Lamb shift (see [8] for a recent review).

A likely source of these discrepancies is an underesti-
mate of model dependence in the extraction of polarizabil-
ities from Compton-scattering data. In principle, one
should opt for a model-independent extraction, based on
the low-energy expansion (LEX) of Compton-scattering
observables, where the leading-order terms, beyond the
Born term, are expressed through polarizabilities. For ex-
ample, the non-Born part of the unpolarized differential
cross section for Compton scattering off a target with mass
M and charge Ze is given by [2]

d#ðNBÞ

d!L
¼ &Z2!em

M

!
$0

$

"
2
$$0½!E1ð1þ cos2%LÞ

þ 2"M1 cos%L) þOð$4Þ; (2)

where $ ¼ ðs&M2Þ=2M and $0 ¼ ð&uþM2Þ=2M are,
respectively, the energies of the incident and scattered

photon in the lab frame, %L (d!L ¼ 2& sin%Ld%L) is the
scattering (solid) angle; s, u, and t ¼ 2Mð$0 & $Þ are the
Mandelstam variables; and !em ¼ e2=4& is the fine-
structure constant. Hence, given the exactly known Born
contribution [9] and the experimental angular distribution
at very low energy, one could in principle extract the
polarizabilities with a negligible model dependence. In
reality, however, in order to resolve the small polarizability
effect in the tiny Compton cross sections, most of the
measurements are done at energies exceeding 100 MeV,
i.e., not small compared to the pion mass m&. It is m&, the
onset of the pion-production branch cut, that severely
limits the applicability of a polynomial expansion in
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FIG. 1 (color online). The scalar polarizabilities of the proton.
Magenta blob represents the PDG summary [1]. Experimental
results are from Federspiel et al. [15], Zieger et al. [16],
MacGibbon et al. [17], and TAPS [18]. ‘‘Sum Rule’’ indicates
the Baldin sum rule evaluations of !E1 þ "M1 [18] (broader
band) and [19]. ChPT calculations are from [4] (B'PT—red
blob) and the ‘‘unconstrained fit’’ of [5] (HB'PT—blue ellipse).
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Results on µp: rp
ν(2SF=1

1/2 → 2PF=2
3/2 ) = 49881.88(76) GHz Pohl et al., Nature 466, 213 (2010)

49881.35(65) GHz }

Antognini et al., Science 339, 417 (2013)
ν(2SF=0

1/2 → 2PF=1
3/2 ) = 54611.16(1.05) GHz

=⇒ Proton charge radius: rp = 0.84087 (26)exp (29)th = 0.84087 (39) fm
using µp theory summary: Antognini et al., Ann. Phys. 331, 127 (2013) [arXiv:1208.2637]
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