

Institut für Kernphysik

Review on the last developments on polarized targets at Mainz

- 1.- Exp. Boundary Conditions:
- 2.- Polarised Solid Target:

- What do we want to measure? How?
- a) Frozen Spin Target at MAMI
- b) Cryogenics
- c) New Magnet Technology
- d) New Active Target Material

3.- Conclusion and outlook

Annual Meeting of the GDR PH-QCD

27. November 2013 Saclay Andreas Thomas

Standard Model FERMIONS

Leptor	IS spin	= 1/2	Quar	ks
Flavor	Mass GeV/c ²	Electric charge	Flavor	Ap N Ge
$ u_{e}^{electron}_{neutrino}$	<1×10 ⁻⁸	0	U up	0.
e electron	0.000511	-1	d down	0.
ν_{μ}^{muon} neutrino	<0.0002	0	C charm	
$oldsymbol{\mu}$ muon	0.106	-1	S strange	
$ u_{\! au} ^{ m tau}_{ m neutrino}$	<0.02	0	t top	
$oldsymbol{ au}$ tau	1.7771	-1	b bottom	

BOSONS

Unified Electroweak spin = 1			
Name	Mass GeV/c ²	Electric charge	
γ photon	0	0	
W-	80.4	-1	
W+	80.4	+1	
Z ⁰	91.187	0	

Picture of a Proton (Skale fm).

matter constituents spin = 1/2, 3/2, 5/2, ...

	Quarl	KS spin	= 1/2	
ic e	Flavor	Approx. Mass GeV/c ²	Electric charge	
	U up	0.003	2/3	
	d down	0.006	-1/3	
	C charm	1.3	2/3	
	S strange	0.1	-1/3	
	t top	175	2/3	
	b bottom	4.3	-1/3	

force carriers spin = 0, 1, 2, ...

Strong (color) spin = 1			
Name	Mass GeV/c ²	Electric charge	
g gluon	0	0	

QCD Colourless objects:

Baryons (qqq)

Mesons $(q\overline{q})$

H He Hg

Atom Nucleon

Löhrig, Metsch, Petry, Eur.Phys.J. A10 (2001) 395-446 The light baryon spectrum in a relativistic quark model Hydrogen Atom E[eV]

E[GeV]

Nucleon

Polarisation Observables

Disentangle broad, overlapping resonances,
 Measure meson threshold production, quark mass ratios,
 Determine fundamental properties: Spin Polarisibiltities,
 GDH sumrule.

Observables in pseudoscalar meson prod. (Barker, Donnachie & Storrow Nucl Phys B95 (1975))

$$\begin{split} \rho_f \frac{d\sigma}{d\Omega} = & \frac{1}{2} \left(\frac{d\sigma}{d\Omega} \right)_{unpol} \{ 1 - \frac{P_{\gamma}^{lin} \Sigma \cos 2\phi}{\gamma} + \frac{P_x (P_{\gamma}^{circ} F + \frac{P_{\gamma}^{lin} H}{\gamma} \sin 2\phi) \\ & + \frac{P_y (T - \frac{P_{\gamma}^{lin} P}{\gamma} \cos 2\phi) + \frac{P_z (P_{\gamma}^{circ} E + \frac{P_{\gamma}^{lin} G}{\gamma} \sin 2\phi) \end{split}$$

Bonn Frozen Spin Target at A2 / MAMI

[C.Bradtke et al., NIM A436, 430 (1999)]

First measurement of GDH sum rule. Polarisation observable E with 4 π detector DAPHNE. Prototype for CLAS/FROST and MPT. Helicity Dependence E of Meson Photoproduction on the Proton and Neutron GDH sum rule on Proton and Neutron

Published data: Preliminary results: GDH-Experiment at ELSA and MAMI (DAPHNE). 'Crystal Barrel ' and 'CLAS' for E > 500 MeV. 'LEGS experiment at BNL Brookhaven' in the $P_{33}(1232)$ region.

4π photon Spectrometer @ MAMI

Polarized Target for Crystal Ball

Impressions from the technical realisation

Alignment still and evaporator

Alignment thermal radiation shields

Cryostat Performance

Coil has to be as thin as possible to allow low energetic particles to punch through.

Subcooled Superconductor

F54-1.35(0.20)TV

	1 T	$2 \mathrm{T}$	3 T	4 T	
I_c (A)	51.8	39.1	33.5	29.5	

@4.2Kelvin

- Copper/scandium wire with 54 Nb-Ti filaments embedded in it.
- Cu:Sc=1.35:1
- Alloy composition: Nb47wt.%Ti
- Diameter=0.222mm
- It achieves currents up to 50A at 4.2K and 1T.

Simulation and Optimisation Transverse Field

Ideal case for dipole magnet:

$$J(\Phi) \propto \cos \Phi$$

4-layer dipole:

 $N_1 = N_2 = 138$

 $N_3 = N_4 = 78$

Production

4-layer dipole: N1=N2=138 N3=N4=78

DNP at 200mK and 2.5T with 70GHz microwaves. Frozen spin target (25mKelvin, 0.6T). Secondary particles punch through holding coil. All directions of polarization.

Internal Holding Field (1.2K, 0.6T)

Frozen Spin Target Waltz

Crystal Ball

Setup in the A2 - Taggerhall

4π-

Photon

First Beam with Transverse Polarisation started 15th December 2009. In 2010/11 we had more than 5000 hours beam on this target. Longitudinal Target since July 2013.

Perspectives: Internal Polarising Coil

DNP at 200mK and 2.5T with 70GHz microwaves. 10Layer coil at 50A. Secondary particles punch through holding coil. Higher momentum threshold.

Problem is the required field homogeniety of 10-E4. Notched solenoid.3d finite element calculation, optimisation and precise production needed.

Target Material Technology

$$H H H H$$

$$H - C - C - C - C - C - O - H$$

$$H H H H$$
Butanol

X-ray picture with Beamspot and NMR coil

16.2

16.1

16.3

frequency [MHZ]

16.4

16.5

16.6

polarisation due to new

-0.0225 -

-0.0275 -

-0.03 --0.0325 -

-0.035 --0.0375 -

16

doping material with narrow ESR from Bochum.

Data taken in September 2010 & February 2011

Event Selection

M_{miss} (MeV) M_{miss} (MeV)

www.elsevier.nl/locate/nima

Polarized scintillator targets

B. van den Brandt^{a,*}, E.I. Bunyatova^b, P. Hautle^a, J.A. Konter^a, S. Mango^a

^aPaul Scherrer Institute, CH-5232 Villigen PSI, Switzerland ^bJoint Institute for Nuclear Research, Dubna, Head P.O. Box 79, 101000 Moscow, Russia

Received 1 November 1999; accepted 16 November 1999

Abstract

The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its full deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T i a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixir chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and ligl output have been prepared and successfully operated as "live" polarized targets in nuclear physics experiments. © 200 Elsevier Science B.V. All rights reserved.

2 Meter

Fig. 3. Dilution refrigerator: details of the sampleholder with lightguide and of the scintillating target itself.

Active Polarised Target Material

First tests without light readout:

10 discs with 20mm diameter stacked in teflon container with teflon spacers.

Polystyrene + ~5% Butanol Spin density 2.2 *10¹⁹ c T=25 mK $P_{max} \sim 50\%$

Spin density $3.0 * 10^{19} \text{ cm}^{-3}$ T=32 mK and B= 0.2 T P_{max} ~ 70%, tau ~ 5.5 h Spin density $1.5 * 10^{19} \text{ cm}^{-3}$ T=26 mK and B= 0.2 T P_{max} ~ 44%, tau ~ 36 h **Optimisation of** P_{max} **and** τ

 $= \left(\frac{H}{\hbar\gamma_n}\right)^2 \left(d^3R^3\right)$

 T_{1n}

#e ⁻ (*10 ¹⁹ cm ⁻³)	1.5	2.2 (But)	3.0
t[h] @0.2T	36	17	5.5

Light Readout: Active Polarised Target

Cryogenic – Insert Arrived in Mainz last Fri., To be mounted.

First warm in beam test done Yesterday.

Different methods to stack and glue the active polarized target plates. (ligth collection efficiency?)

SiPM in A2 beam. Other candidates are APD's. Operation at 2-4Kelvin.

 \Rightarrow Frozen Spin Target offers all directions of polarization. $\tau \sim 1000 \dots 4000h$.

→ Data taking for 5000h with **CBall TAPS detector system** 2010/2011.

Spin observables with focus to $P_{11}(1440)$, $S_{11}(1535)$, and $D_{33}(1700)$ resonance regions. Meson Production. Complete Experiments.

First Measurement of 4 Vector Spin Polarisabilities in Compton Scattering, F and T in π -threshold region. Light quark mass difference. Isospin breaking.

Outlook Technology

Production of an internal polarising coil avoids FST waltz → DNP Target

(+better systematics (position, noise,...), +better statistics (efficiency), +higher polarisation, +less manpower, -more material, momentum threshold)

R&D for polarised active szintillator target for threshold production. (+new kinematic range in combination with 4π detectors)