

Hadronization studies at an EIC

Raphaël Dupré

Institut de Physique Nucléaire d'Orsay CNRS - IN2P3 Université Paris-Sud

Unité mixte de recherche

CNRS-IN2P3 Université Paris-Sud

91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70 http://ipnweb.in2p3.fr

The Hadronization Process

- Non perturbative QCD process
 - → Need Models
- → Formation time → propagation of the color neutral prehadron
- No experimental knowledge of these times !
 - ➔ Models indicate few fm level
- Nuclear targets of different size can help to measure them
 - → Leads to more complicated models

Motivations

→Understand the hadronization process by

- ➔ Measuring the characteristic times
- Calculating parton energy loss in QCD medium
- ➔ Understanding the pre-hadron structure

→Characterization of the QCD medium

- → Using parton energy loss
- → Comparing cold and hot nuclear matter
- → QCD evolution in medium

→Reduce systematic effects when attenuation needs to be corrected

Neutrino experiments especially

HERMES Results : The Pion Ratios

→Pion behavior coherent with all previous results for hadrons

- ➔ no differences are observed with the 3 pions
- →GiBUU model based on prehadron absorption can describe these data
 - ➔ no quark energy loss
 - Production and formation times extracted from PYTHIA
 - Prehadron cross section growing linearly with time

→Can be explained by

- → the smaller cross section of K+
 - → Success in GiBUU but miss K-
- → the different behavior of the FF
 - Not enough as seen in Monte-Carlo simulation (Accardi & RD)
- → contamination from π + p → Λ + K

(Kopeliovich et al.)

→Can be resolved by selecting higher z

→ Less target fragmentation

HERMES Results : Two Pions Ratio

→Multiplicity ratio of two hadrons production

→The A scaling disappears

- ➔ in contradiction with all models
- ➔ most model ignore these data

→Explanation based on a modification of the FF ?

Part of the energy lost by the leading hadron goes to the sub-leading hadrons ?

→Cronin effect

- → stronger than for HERMES
- → vary with nu not z unlike HERMES

→Our higher z cut reduce the effect from target fragmentation?
→Replaced by a Fermi motion effect?

The Electron Ion Collider (EIC)

- Project of electron ion collider (EIC)
 - JLab and RHIC projects s~1000GeV² and more
 - Low to no attenuation region \rightarrow centered on ΔP_{T}^{2} measurement
 - Isolate energy loss effects and eventually modification of FF
 - Access to heavy flavor for comparison with Heavy Ion Collisions

→Luminosity: 200 fb-1

→ or 115 days at 2.10^34 cm-2s-1 per target

→Use two energies

- → s = 200 GeV2
- → s = 1000 GeV2

→Cuts to select DIS on a single quark

→ Q2 > 1 GeV2 & W > 4 GeV

→ XBj > 0.1 (permit to suppress di-quark production)

→Cut to select leading hadrons

→ z > 0.4

→Experimental limits

→ 0.1 < y < 0.85

→Acceptance assumed

→ π , K and η A = 50%

→ D and B A = 2%

Ratio at s = 200 GeV2

Q2 evolution

Flavor scaling of ΔPT2 (s=200 GeV2)

→Work from Domdey et al. leads to a simple scaling of pQCD in-medium energy loss between quark flavors

→Can be easily measured at any EIC energy (here 20 < v < 30 GeV)</p>

What happens at high energy ?

Hadronization effect gets smaller at higher energy. How to deal with that ?

Enhancement of Nuclear Effects

March 7, 2013

Requesting Grey tracks enhance the nuclear effects !

Example for hadronization studies:

Fig. 10. Multiplicity ratio $R(n_g)_{\mu Xe}$ (full circles) and $R(n_g)_{\mu Xe}$ (open triangles) as a function of the number n_g of grey tracks. The plots are for all charged, for positive and negative hadrons, and for three rapidity intervals (target, central, projectile). The lines are the results of straight-line fits to the data points

Physics Outlook

→Hadronization studies

- Measurement on lepton scattering on cold nuclear matter give great constrain on parton kinematic and medium characteristics
- ➔ Important tool to test models used in HIC

→Hadronization at EIC

- → Large kinematic coverage
- → Clean access to parton energy loss
- Observation of heavy quarks in CNM
- → Grey tracks, a tool to enhance nuclear effects