

Probing sea quarks and gluons at an EIC at Horizon 2025

Claude MARCHAND

CEA Saclay, IRFU, Service de Physique Nucléaire

- 1 Present status on polarized PDF
- 2 Improvements expected from an EIC
- 3 EIC projects: machine layouts
- 4 EIC projects: detectors and overview of R&D

Unified view of Nucleon structure

State of the art: unpol. PDF q(x)

Claude Marchand - GDR PH-QCD

State of the art: pol. PDF q(x)

+

Inclusive DIS

Semi Inclusive DIS

1

ີ່ບ

+

 $g_1^p(x_{Bj}^-, Q^2)$ -

How q and g share nucleon spin?

Nucleon spin « puzzle » still open

Merits of collider vs fixed target

- Easier to reach high Center of Mass energies ($E_{CM}^2 = s$)
 - $s = 4E_e E_p$ for colliders (E_{CM} = 45 GeV/5*100, 140 GeV/20*250)
 - s = 2 $E_e M_p$ for fixed target experiments (E_{CM} = 17 GeV/160 at COMPASS)
 - \rightarrow access to lower x and higher Q² (Q²=x.y.s)
- Spin physics with high Figure Of Merit (FOM)
 - Unpolarized FOM = Rate = Luminosity x Cross Section x Acceptance
 - Polarized FOM = Rate x (Target Polarization)² x (Target Dilution)²
 - No *dilution* and high ion polarization (also *transverse*): P².D²> 10/fixed target
 - Higher luminosity then HERA/COMPASS, no holding fields (*acceptance*)
 - No *backgrounds* from target (Moller electrons)
- Easier detection of reaction products
 - Can optimize kinematics by adjusting beam energies
 - No matter between IP and detectors: can use displaced vertex to tag charm

EIC kinematic coverage for DIS

Quark and gluon helicities EIC

HERA F₂

Quark and gluon helicities EIC

3D imaging EIC (GPD)

3D imaging EIC (DVCS)

> |t|-differential cross section is a very powerful tool

- Gives precise access to GPD H
- Fourier transform -> direct imaging in impact parameter s

Transverse target SSA - EIC

Gives access to GPD E

Overview of EIC projects

November 27, 2013

Claude Marchand - GDR PH-QCD

Overview of EIC projects

Lepton-Proton/Ion machines world-wide

eRHIC/BNL - MEIC-EIC/JLAB

Figure 3.2: The MEIC electron and ion collider rings and the large ion booster rings are stacked vertically and housed in the same tunnel.

eRHIC and MEIC staging scenario

EIC – staging at BNL and JLab

eRHIC @ BNL	<u>Stage I</u>	<u>Stage II</u>
eRHIC detector	$\sqrt{s} = 34 - 71 \text{ GeV}$ $E_e = 3 - 5 (10 ?) \text{ GeV}$ $E_p = 100 - 255 \text{ GeV}$ $E_{Pb} = up \text{ to } 100 \text{ GeV/A}$	$\sqrt{s} = up \text{ to } \sim 180 \text{ GeV}$ $E_e = up \text{ to } \sim 30 \text{ GeV}$ $E_p = up \text{ to } 275 \text{ GeV}$ $E_{Pb} = up \text{ to } 110 \text{ GeV/A}$
MEIC / EIC @ JLab	$\sqrt{s} = 13 - 70 \text{ GeV}$ $E_e = 3 - 12 \text{ GeV}$ $E_p = 15 - 100 \text{ GeV}$ $E_{Pb} = \text{up to 40 GeV/A}$ (MEIC)	$\sqrt{s} = up \text{ to } \sim 140 \text{ GeV}$ $E_e = up \text{ to } 20 \text{ GeV}$ $E_p = up \text{ to at least } 250 \text{ GeV}$ $E_{Pb} = up \text{ to at least } 100 \text{ GeV/A}$ (EIC)

$ep \rightarrow e'\pi n$ (or γp) kinematics

November 27, 2013

Claude Marchand - GDR PH-QCD

MEIC/EIC at JLAB – detector design

eRHIC at BNL – detector design

R&D projects on detectors

October	4, 2013		EIC @ MENU2013, Rome, Ital	y 4
Prop. No.	Title	Contact	Institutions	T. I. udlam
RD 2011-1; RD 2012-14	Tungsten fiber calorimeters	H. Huang/ C. Woody	UCLA, TAMU, Penn St., BNL, USTC	Compact Calorimetry
RD 2011-3; RD 2012-7	DIRC - based PID	P. Nadel-Turonski	Catholic Univ. of America, Old Dominion Univ., Univ. of South Carolina, JLab, GSI Darmstadt	Particle ID; Simulation; Hermiticity
RD 2011-5	Radiation resistant Si PM	C. Zorn	JLab	Hi density photon detecto
RD 2011-6; RD 2012-9; RD 2012-16	Tracking/PID/Simulation	K. Dehmelt/ T. Hemmick	BNL, BNL/RBRC, Florida Inst. of Technology, Iowar State, LBNL, MIT, Stony Brook Univ., Temple Univ., Univ. Virginia, Yale Univ., JLab	Simulation; Tracking; Particle ID; Hermiticity
RD 2012-3	Tracking: GEM & Micromegas	B. Surrow, F. Sabatie	CEA Saclay, MIT, Temple Univ.	Compact tracking; Hermiticity
RD 2012-5	Physics simulations	T. Ullrich	BNL	Simulation tools
RD 2012-11	Spin-light polarimeter	D. Dutta	Mississippi State Univ., Coll. Of William & Mary, Stony Brook Univ., Gutenberg Univ. (Mainz), UV Charlottesville, ANL, JLab	Novel technique for e- beam polarimetry
RD 2012-12	Forward RICH detector	V. Kubarovsky	JLab, INFN Frascati, INFN Ferrara, Christopher Newport Coll., UTFSM (Valparaiso, Chile)	Compact RICH with Si PM
RD 2012-13	Forward EM pre-shower	W. Brooks	UTFSM (Valparaiso, Chile)	LYSO crystal-based desig
RD 2012-15	Gem based TRD	Z. Xu, M. Shao	ANL, BNL, Indiana Univ., USTC (China), VECC (India)	e-tagging with GEM TRD
)-2013-1	Magnetic cloak	A. Deshpande, N. Feege	Stony Brook, BNL, RIKEN	Magnetic Cloak for shielding beams
-2913r2y]	B Dead area free silicon sensors	E. Kistenev, Z. Li	BNL	Dead area free sensors hpand

Possible timelines

•Few EIC projects worldwide on the 2020-2025 horizon

on the high energy, « high » luminosity side, 2 « concurrent » projects in US: eRHIC at BNL, MEIC/EIC at JLAB, with staged scenarios.

Integral part of NSAC long range plan:

We recommend the allocation of resources to develop accelerator and detector technology necessary to lay the foundation for a polarized Electron Ion Collider. The EIC would explore the QCD frontier of strong color fields in nuclei and precisely image the gluons in the proton.

•EIC very attractive to improve 1D and 3D imaging of nucleon (polarized DIS, GPD, TMD,...)

thanks to increase of (x,Q²) coverage due to higher E_{CM} (eg ΔG via DGLAP) thanks to improved FOM for asymetry measurements (L.P².D²) but needs very good control of systematics to profit from above gain

Broad science case well documented in 2012 White Paper (1212.1701)
Machine and detector designs advancing fast, as well as R&D