

Results on neutrinoless double beta decay from GERDA Phase I

Carla Macolino on behalf of the GERDA collaboration

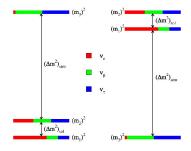
INFN, Laboratori Nazionali del Gran Sasso

CPPM Marseille 25.11.2013

Outline

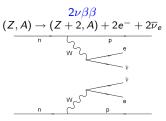
- Probing the nature of neutrino with neutrinoless double-beta decay
- The GERDA experiment
- The GERDA energy spectra
- The GERDA physics results:
 - Measurement of the half-life of $2\nu\beta\beta$ decay of ⁷⁶Ge
 - The background models for GERDA Phase I
 - The Pulse Shape Discrimination of GERDA events
 - Result on $0\nu\beta\beta$ half-life
- On the way to GERDA Phase II

The GERDA collaboration

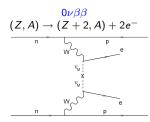


112 physicists, 16 institutions, 7 countries

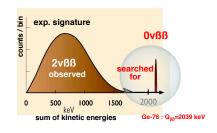
Carla Macolino (LNGS)


Investigate existence of $0 u\beta\beta$

- $0
 u\beta\beta
 ightarrow$ Majorana nature of neutrino
- Lepton number violation
- physics beyond Standard Model
- Shed light on effective neutrino mass
- Shed light on neutrino mass hierarchy



Search for $0\nu\beta\beta$ decay


 $\Delta L = 0 \Longrightarrow$ Predicted by s.m.

 $\Delta L = 2 \implies$ Prohibited by s.m. Light Majorana neutrino exchange ? $Q = M_i - M_f - 2m_e$

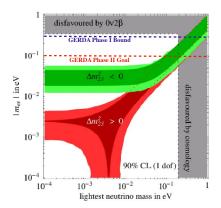
The GERmanium Detector Array

experiment is an ultra-low background experiment designed to search for $^{76}{\rm Ge}$ $0\nu\beta\beta$ decay.

 $Q_{\beta\beta} = 2039 \text{ keV}$

Carla Macolino (LNGS)

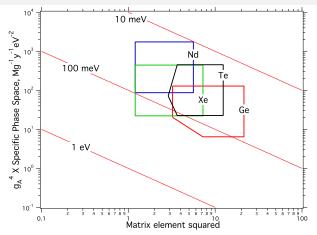
Search for $0\nu\beta\beta$ decay


If light Majorana neutrino exchange is the dominant mechanism: $(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$

with $\langle m_{etaeta}
angle =$ effective electron neutrino mass

 $\langle m_{\beta\beta} \rangle \equiv |U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 e^{i\phi_2} + |U_{e3}|^2 m_3 e^{i\phi_3}$

 m_i =masses of the neutrino mass eigenstates U_{ei} =elements of the neutrino mixing matrix $e^{i\phi_2}$ and $e^{i\phi_3}$ =Majorana CP phases


 \rightarrow information on the absolute mass scale!

- Phase I result: BI ~ 10⁻² cts/(keV kg yr) and ~ 20 kg yr exposure Claim from Phys. Lett. B 586 (2004) 198 rejected with high probability
- Phase II goal: BI $\sim 10^{-3}$ cts/(keV kg yr) and 100 kg yr exposure sensitivity on $T_{1/2}^{0\nu} \sim 1.4\cdot 10^{26}$ yr (factor 7 better than Phase I)

Carla Macolino (LNGS)

Ge detectors w.r.t. other isotopes

Plot by R. G. H. Robertson, arXiv:1301.1323v1

- plot corresponding to $0
 u\beta\beta$ rate of 1 count/(ton·yr)
- no clear golden candidate
- similar specific rates within a factor of 2
- ⁷⁶Ge important for historical reasons too

Carla Macolino (LNGS)

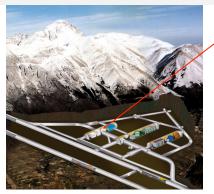
Ge detectors

	$\frac{Sensitivity}{Sensitivity} T_{1/2} \propto \epsilon \cdot \frac{\varepsilon}{A} \cdot \sqrt{\frac{M \cdot T}{b \cdot \Delta E}}$					
ε	detection efficiency	$\gtrsim 85\%$				
ε	enrichment fraction	high natural or enrichment				
M	active target mass	increase mass				
Т	measuring time					
b	background rate	minimize &				
	(cts/(keV kg yr))	select radio-pure material				
ΔΕ	energy resolution	use high resolution spectroscopy				

Very low background High-Purity Germanium Detectors (HPGe) Advantages: Disadvantages:

- well established enrichment technique $\varepsilon = 86\%$ for $^{76}{\rm Ge}$
- M and T expandable
- very good energy resolution $\Delta E \sim 0.1\%$ 0.2%
- very good detection efficiency $\epsilon \sim 1$ (Ge as source and detector)
- high-purity detectors \rightarrow low background b

- Low $Q_{\beta\beta}$ value (lower than 208 Tl 2614 keV) \rightarrow background
- Need enrichment from 7% to 86%
 → it is expensive


GERDA @ LNGS

Construction completed in 2009 - Inauguration 9 Nov. 2010

Carla Macolino (LNGS)

GERDA @ LNGS

- Hall A of Gran Sasso Laboratory (INFN)
- 3800 m.w.e.

Background from:

External:

- γ's from Th and Ra chain
- neutrons
- cosmic-ray muons

Internal:

- cosmogenic ⁶⁰Co (T_{1/2}=5.3 yr)
- cosmogenic ⁶⁸Ge (T_{1/2}=271 d)
- Radioactive surface contaminations

Background reduction and events identification

- Gran Sasso suppression of μ flux (10⁶)
- · Material selection
- Passive shield (H₂O LAr Cu)

Carla Macolino (LNGS)

- · Muon veto
- · Detector anticoincidence
- · Pulse-shape analysis
 - CPPM Marseille 25.11.2013 10 / 36

GERDA @ LNGS

GERDA Building

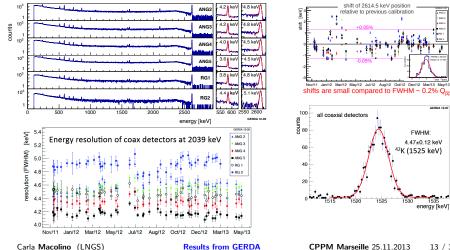
The GERDA collaboration, Eur. Phys. Journ. C 73 (2013)

Carla Macolino (LNGS)

Results from GERDA

CPPM Marseille 25.11.2013 11 / 36

The GERDA detectors



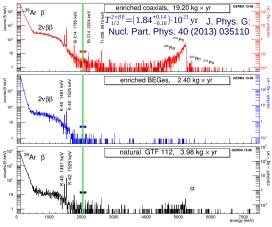
- 3 + 1 strings
- 8 enriched Coaxial detectors: working mass 14.6 kg (2 of them are not working due to high leakage current)
- GTF112 natural Ge: 3.0 kg
- 5 enriched BEGe: working mass 3.0 kg (testing Phase II concept in the real environment)

Carla Macolino (LNGS)

Energy calibrations and data processing

- weekly calibrated spectra with ²²⁸Th sources and pulser with 0.05 Hz frequency
- data useful for monitoring of resolution and stability over time
- exposure-weighted FWHM at $Q_{\beta\beta}$ is about 4.8 keV for Coaxials (0.23%) and 3.2 keV (0.16%) for BEGes

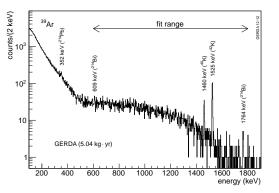
GERDA spectrum in fast motion


Carla Macolino (LNGS)

Results from GERDA

CPPM Marseille 25.11.2013 14 / 36

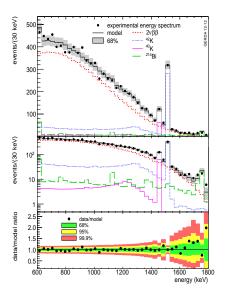
Energy spectra


- *Silver coax*: data from coaxial detectors during BEGe deployment (higher BI)
- Golden coax: data from coaxial detectors except Silver coax
- BEGe: data from BEGe detectors

- Events in $Q_{\beta\beta}\pm$ 20 keV kept BLINDED to not bias analysis and cuts
- Phase I data divided in three subsets:
 - Golden coax: 17.9 kg yr
 - Silver coax: 1.3 kg yr
 - BEGe: 2.4 kg yr
- Background level before PSD at Q_{ββ} for Golden coax: 0.018±0.002 cts/(keV kg yr)

Background ${\sim}10{\times}$ lower than previous Ge experiments!!

Half-life of $2\nu\beta\beta$ decay of ⁷⁶Ge



- Data: 8796 events
- Fit range: 600-1800 keV
- 5.04 kg · yr exposure
- Avg. active mass fraction:

 $(86.7 \pm 4.6(uncorr.) \pm 3.2(corr.))\%$

• Avg. enrichment fraction: $(86.3 \pm 2)\%$

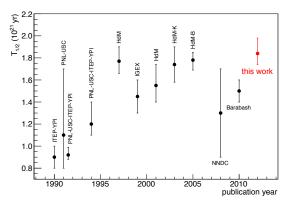
Half-life of $2\nu\beta\beta$ decay of $^{76}{ m Ge}$

Binned maximum likelihood Parameters:

- Active detector masses (6+1) *nuisance parameter*
- Fraction enrichment in ⁷⁶Ge (6) *nuisance parameter*
- Background contributions (3x6) nuisance parameter
- T^{2ν}_{1/2} common to all the detectors (1)

Derive $T_{1/2}^{2\nu}$ after the fit integrating over nuisance parameters $2\nu\beta\beta$ (80%) 42 K (14%) 214 Bi (4%) 40 K (2%)

 $\mathbf{T}_{1/2}^{2\nu} = (\mathbf{1.84}^{+0.09+0.11 \text{syst}}_{-0.08-0.06 \text{syst}}) \cdot \mathbf{10}^{21} \text{ yr}$

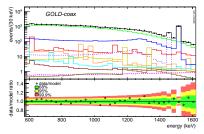

The GERDA collaboration J.Phys.G: Nucl. Part. Phys. 40 (2013) 035110

Carla Macolino (LNGS)

Results from GERDA

CPPM Marseille 25.11.2013 17 / 36

Half-life of $2\nu\beta\beta$ decay of ⁷⁶Ge



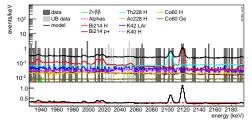
- Uncertainty comparable to best previous experiment (even with lower exposure).
- Such a careful systematic error analysis never done in the past.
- Good agreement with re-analysis of HdM data HdM-K: Nucl. Instr. Meth. A 513, 596 (2003) HdM-B: Phys. Part. Nucl. Lett. 2, 77/ Pisma Fiz. Elem. Chast. Atom. Yadra 2, 21 (2005)

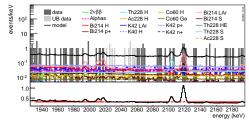
Carla Macolino (LNGS)

The Background Model of GERDA Phase I

The GERDA collaboration, submitted to Eur. Phys. J. C arXiv:1306.5084

- Simulation of known and observed background
- Fit combination of MC spectra to data from 570 keV to 7500 keV
- Different combinations of positions and contributions tested

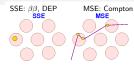

Main contribution from close background sources: $^{228}{\rm Th}$ and $^{226}{\rm Ra}$ in holders, $^{42}{\rm Ar}$ α on detector surface


Carla Macolino (LNGS)

The Background Model of GERDA Phase I

Minimum model fit

Maximum model fit

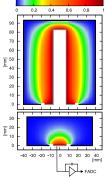


- No line expected in the blinded window
- Background flat between 1930 and 2190 keV
- 2104±5 keV and 2119±5 keV excluded
- Partial unblinding after fixing calibration and background model
- In 30 keV window:
 - expected events: 8.6 (minimum model) or 10.3 (maximum model)
 - observed events: 13

Golden coax:

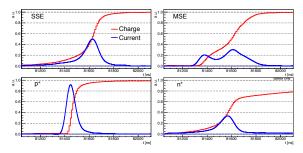
 $\begin{array}{l} {\sf BI} = 1.75^{+0.26}_{-0.24} \cdot 10^{-2} \ {\sf cts}/({\sf keV} \ {\sf kg} \ {\sf yr}) \\ \\ \hline {\sf BEGe}: \end{array}$

$${\sf BI}=3.6^{+1.3}_{-1.0}\cdot10^{-2}~{\sf cts}/({\sf keV}~{\sf kg}~{\sf yr})$$



Pulse-shape analysis

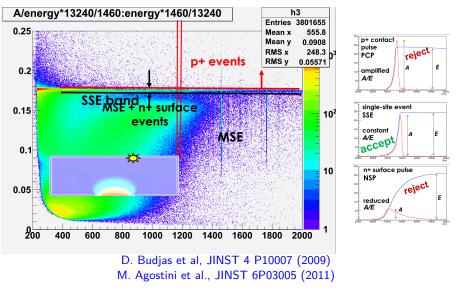
e signal: single site energy deposition


 γ signal: multiple site energy deposition

Current signal = $q \cdot v \cdot \Delta \Phi$ q=charge, v=velocity (Schockley-Ramo theorem)

Carla Macolino (LNGS)

 $0\nu\beta\beta$ events: 1 MeV electrons in Ge \sim 1mm range one drift of electrons and holes SINGLE SITE EVENTS (SSE)

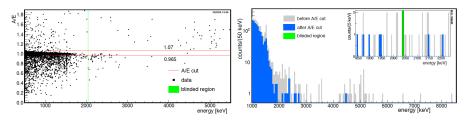

Background from γ 's: MeV γ in Ge \sim cm range several electron/holes drifts MULTI SITE EVENTS (MSE)

Surface events: only electron or hole drift Results from GERDA CPPM Marseille 25.11.2013

25.11.2013 21 / 36

Pulse shape discrimination for BEGEs

A/E parameter allows to separate SSE events from MSE, n^+ and p^+ events

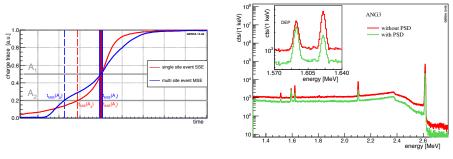


Carla Macolino (LNGS)

The GERDA collaboration, Eur. Phys. J. C 73, 2583 (2013)

PSD for BEGe:

- A over E parameter (A/E) between 0.965 and 1.07
- Double Escape Peak of 2615 keV γ in $^{228}{\rm Th}$ from calibrations (1593 keV) \rightarrow SSE for $0\nu\beta\beta$
- FEP at 1621 keV or SEP at 2104 keV are MSE
- 80% background rejection at Q_{ββ}
- 0.92 \pm 0.02 efficiency for 0 $\nu\beta\beta$ 7/40 events kept in 400 keV window

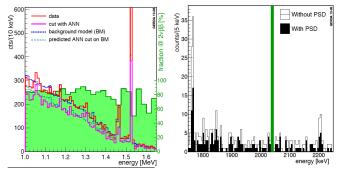


Carla Macolino (LNGS)

The GERDA collaboration, Eur. Phys. J. C 73, 2583 (2013)

PSD for Coaxials:

- Artificial Neural Network ANN
- ANN analysis of 50 rise-time info (1,3,5,...,99%) with TMVA/TMIpANN
- trained on signal SSE: ²⁰⁸TI (2614 keV) DEP at 1592 keV
- MSE training with background-like ²¹²Bi FEP at 1621 keV

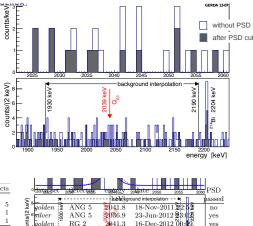

Carla Macolino (LNGS)

Results from GERDA

CPPM Marseille 25.11.2013 24 / 36

The GERDA collaboration, Eur. Phys. J. C 73, 2583 (2013)

PSD for Coaxials


- Good agreement between model and data for 2
 uetaeta
- $2\nu\beta\beta$ survival fraction: 0.85 \pm 0.02
- Estimated survival fraction for 0νββ events: 0.90^{+0.05}_{-0.09}
- Other 2 methods for PSD considered for cross-check: 90% of the events rejected by ANN are also rejected by the others 2 methods

Carla Macolino (LNGS)

Results on 0 uetaeta decay

- Summed exposure: 21.6 kg yr
- Unblinding after calibration finished, data selection frozen, analysis method fixed and PSD selection fixed
- Consider the 3 data sets separately in the analysis
- BI = 0.01 cts/(keV kg yr) after PSD
- No events in $\pm \sigma_E$ after PSD
- 3 events in $\pm 2\sigma_E$ after PSD

data set	$\mathcal{E}[kg \cdot yr]$	$\langle \epsilon \rangle$	bkg	BI [†])	cts
without P	SD				
golden	17.9	0.688 ± 0.031	76	18 ± 2	5
silver	1.3	0.688 ± 0.031	19	63^{+16}_{-14}	1
BEGe	2.4	0.720 ± 0.018	23	42^{+10}_{-8}	1
with PSD					
golden	17.9	$0.619^{+0.044}_{-0.070}$	45	11 ± 2	2
silver	1.3	$0.619^{+0.044}_{-0.070}$	9	30^{+11}_{-9}	1
BEGe	2.4	0.663 ± 0.022	3	5^{+4}_{-3}	0

no yes no

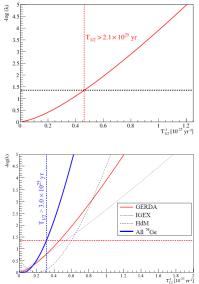
no

27-Apr-2018n90n21keV]

[†]) in units of 10⁻³ cts/(keV·kg·yr).

 No peak in spectrum observed, number of events consistent with expectation from background → GERDA sets a limit on the half-life of the decay!

 Carla Macolino (LNGS)
 Results from GERDA
 CPPM Marseille 25.11.2013
 26 / 36


golden

ÃG 1

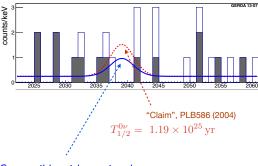
2041.7

Results on $0 u\beta\beta$ decay

The GERDA collaboration, Phys. Rev. Lett. 111 (2013) 122503

- Frequentist analysis Median sensitivity: $T^{0\nu}_{1/2}>\!\!2.4\!\cdot\!10^{25}~\text{yr at 90\% C.L.}$
- Maximum likelihood spectral fit (3 subsets, 1/T_{1/2} common)
- Bayesian analysis also available Median sensitivity: $T_{1/2}^{0\nu}$ >2.0·10²⁵ yr at 90% C.L.
- Profile likelihood result: $T_{1/2}^{0\nu}>2.1\cdot10^{25} \text{ yr at } 90\% \text{ C.L.}$
- Bayesian analysis result: $T_{1/2}^{0\nu}>1.9\,\cdot\,10^{25} \text{ yr at }90\% \text{ C.I.}$
- Best fit: $N^{0\nu}=0$

Results on 0 uetaeta decay


Comparison with claim from Phys. Lett. B 586 (2004) 198

Compare two hypotheses:

- H_1 : $T_{1/2}^{0\nu} = 1.19^{+0.37}_{-0.23} \cdot 10^{25}$ yr
- H₀: background only

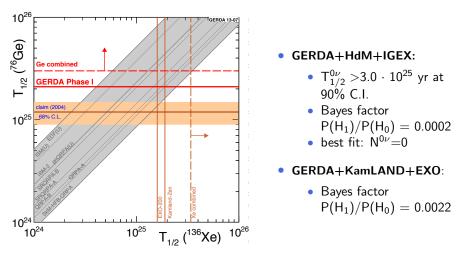
GERDA only:

- Profile likelihood $P(N^{0\nu}=0|H_1) = 0.01$
- Bayes factor $P(H_1)/P(H_0) = 0.024$

Compatible with no signal events $T_{1/2}^{0\nu} {>} 2.1 {\cdot} 10^{25}$ yr

Claim strongly disfavoured!

N.B.: $T_{1/2}^{0\nu}$ from Mod. Phys. Lett. A 21 (2006) 157 not considered because of inconsistencies (missing efficiency factors) pointed out in Ann. Phys. 525 (2013) 259 by B. Schwingenheuer.


Carla Macolino (LNGS)

Results from GERDA

CPPM Marseille 25.11.2013 28 / 36

Combining with Ge and Xe previous results

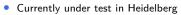
The GERDA collaboration, Phys. Rev. Lett. 111 (2013) 122503 Comparison with previous half-life limits from Ge and Xe experiments

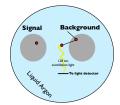
Carla Macolino (LNGS)

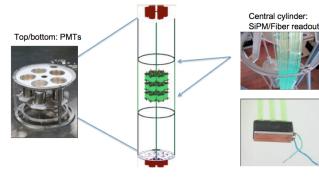
On the way to GERDA Phase II

How to get a higher sensitivity for the Phase II:

- reduce radiation sources and understand background sources
- improve background rejection
- increase mass and improve energy resolution


Strategy:


- Phase I ended on Sept. 30th 2013. Phase II transition currently ongoing at LNGS
- increase mass: additional 30 enriched BEGe detectors (about 20 kg)
- reduce background by a factor of 10 w.r.t. GERDA Phase I:
 - 1 make things cleaner:
 - use lower background Signal and HV cables w.r.t. Phase I
 - reduce material for holders and special care in crystal production
 - Preject residual background radiation:
 - by Pulse Shape Analysis for high background recognition efficiency
 - by LAr scintillation light for background recognition and rejection
- start commissioning in Early 2014


Liquid Argon instrumentation for Phase II

PMT LAr instrumentation studies for Phase II in LArGe (a smaller GERDA facility)

- SiPM fiber curtain
- PMTs on top and bottom of the array
 - Hamamatsu PMTs showed flashing problems in LAr
 - Hamamatsu sent us modified versions of PMTs with problem solved

Carla Macolino (LNGS)

Liquid Argon instrumentation for Phase II

Background	rate	
	without cuts	
	$(10^{-3} \text{ cts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})$	
²²⁸ Th (near)	≤5	
²²⁸ Th (1m away)	<3	
²²⁸ Th (distant)	<3	
²¹⁴ Bi (holder/MS)	≤5	
²¹⁴ Bi (near p ⁺)	<6	
²¹⁴ Bi (n ⁺)	<7	
²¹⁴ Bi (1m away)	<3	
⁶⁰ Co (near)	1	
⁶⁰ Co (in Ge)	≤0.3	
⁶⁸ Ga (in Ge)	≤2.3	
²²⁶ Ra (α near p ⁺)	1.5	
⁴² K (β on n ⁺)	\sim 20	
unknown (n?)	?	

- Phase II background based on Phase I
- background decomposition from coaxial detectors compatible with BEGe spectral decomposition
- ⁴²K dominant background source
- ⁴²K with Cu MS
- holder and MS contamination expected to be reduced by a factor of 10
- 226 Ra contamination dominated by 226 Ra in LAr near p⁺

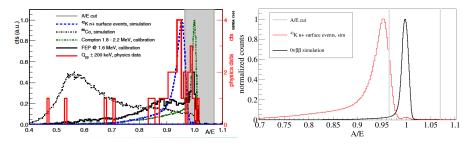
Liquid Argon instrumentation for Phase II

⁴²K mitigation by different Mini-Shroud configurations

- Phase I configuration: Copper +PSA Mini-Shroud
- Option 1: Copper-meshed Mini-Shroud
- Option 2: Nylon Mini-Shroud with WLS
- Option 3: Copper Mini-Shroud but SiPMs inside

Carla Macolino (LNGS)

$^{\rm 42}{\rm K}$ mitigation


Expected background contributions from MC simulations with background rejection from PSD and LAr veto

Background	without cuts	after PSD
		+ Veto
	$(10^{-3} \text{ cts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})$	$(10^{-3} \text{ cts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})$
²²⁸ Th (near)	≤5	\leq 0.01
²²⁸ Th (1m away)	<3	<0.01
²²⁸ Th (distant)	<3	<0.1
²¹⁴ Bi (holder/MS)	≤5	≤ 0.13
²¹⁴ Bi (near p ⁺)	<6	<0.03
²¹⁴ Bi (n ⁺)	<7	<0.15
²¹⁴ Bi (1m away)	<3	<0.08
⁶⁰ Co (near)	1	0.001
⁶⁰ Co (in Ge)	≤0.3	≤ 0.0004
⁶⁸ Ga (in Ge)	≤2.3	≤ 0.04
²²⁶ Ra (α near p ⁺)	1.5	<0.03
⁴² Κ (β on n ⁺)	~20	<0.86
unknown (n?)	?	?

Carla Macolino (LNGS)

PSD and ⁴²K mitigation

Experimental evidence of efficient ⁴²K rejection by PSD on GERDA Phase I data The GERDA collaboration, Eur. Phys. J. C 73, 2583 (2013)

- surface β rejection can be traded against $0\nu\beta\beta$ acceptance
- final cut level will be optimised for optimal sensitivity
- better signal noise/stability directly translates in better rejection
- We are confident to reach 0.001 cts/(keV kg yr) given NO additional background components

Carla Macolino (LNGS)

Conclusions

- Phase I data taking successful!! Phase I ended Sept.,30th 2013
- 5 publications in the first 9 months of 2013
- o total exposure of GERDA Phase I is 21.6 kg yr
- $\,\circ\,$ very low background 0.01 cts/(keV kg yr) after PSD
- $\circ\,$ half-life of $0\nu\beta\beta$: T $^{0\nu}_{1/2}>2.1\cdot10^{25}$ yr (90% C.L.) for ^{76}Ge
- $\circ\,$ probability that the signal from the previous claim produces the actual GERDA outcome is $1\%\,$
- o starting the Phase II to improve sensitivity
- Phase II commissioning in Early 2014

Carla Macolino (LNGS)

Merci

Merci de votre attention!!

GERDA Collaboration Meeting in Dubna, Russia June 2013

Carla Macolino (LNGS)