X-shape magnetic fields in galactic halos

Katia FERRIÈRE

Institut de Recherche en Astrophysique et Planétologie, Observatoire Midi-Pyrénées, Toulouse, France

Cosmic rays and their interstellar medium environment CRISM-2014

Montpellier – 24 - 27 June, 2014

Outline

2 Physical origin

Katia FERRIÈRE X-shape magnetic fields in galactic halos

Observational overview Physical origin

Mathematical description Our 4 models

Outline

2 Physical origin

3 Mathematical description

Katia FERRIÈRE X-shape magnetic fields in galactic halos

Observational tools

• Linear polarization of starlight & dust thermal emission Due to *dust grains* \rightarrow general ISM $\ll \vec{B}_{\perp}$ (orientation only)

• Zeeman splitting Molecular & atomic *spectral lines* \rightarrow neutral regions $\ll B_{\parallel}$ (strength & sign)

Faraday rotation

Caused by free electrons \rightarrow ionized regions

 $\gg B_{\parallel}$ (strength & sign)

• Synchrotron emission

Produced by CR electrons \rightarrow general ISM

 $\ll \vec{B}_{\perp}$ (strength & orientation)

イロト イヨト イヨト イヨト

The Milky Way

Magnetic field strength

- In general ISM
 - Near the Sun : $B_{\rm ord} \sim 3 \,\mu {\rm G}$ & $B_{\rm tot} \sim 5 \,\mu {\rm G}$
 - Global spatial distribution : $L_{\rm B} \sim 12 \ \rm kpc$ & $H_{\rm B} \sim 4.5 \ \rm kpc$
- In ionized regions
 - Near the Sun : $B_{\rm reg} \simeq 1.5 \,\mu{
 m G} \,\&\, B_{\rm fluct} \sim 5 \,\mu{
 m G}$
- In neutral regions
 - In atomic clouds : $B \sim a$ few μG
 - In molecular clouds : $B \sim (10 3000) \,\mu\text{G}$

イロト イヨト イヨト イヨト

The Milky Way

Magnetic field direction

- Near the Sun
 - \vec{B}_{reg} is horizontal & nearly azimuthal $(p \simeq -7^{\circ}, -8^{\circ})$
- In the Galactic disk
 - \vec{B}_{reg} is horizontal & mostly azimuthal
 - \vec{B}_{reg} reverses direction with decreasing radius
 - \vec{B}_{reg} is symmetric in z
 - \vec{B}_{reg} is neither pure ASS nor pure BSS
- In the Galactic halo
 - \vec{B}_{reg} has horizontal & vertical components
 - \vec{B}_{reg} is anti-symmetric in z

van Eck et al. (2011)

External spiral galaxies

In galactic disks

- $B_{\rm ord} \sim (1-5) \, \mu {\sf G} \, \& \, B_{\rm tot} \sim (5-20) \, \mu {\sf G}$
- \vec{B}_{ord} is horizontal & has a spiral stucture

In galactic halos

- $B_{\rm tot} \lesssim 10 \,\mu{
 m G}$
- $\vec{B}_{\rm ord}$ is X-shaped

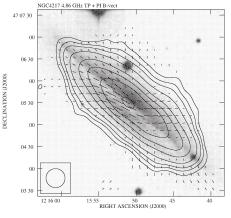
イロト イポト イヨト イヨト

Face-on spiral galaxy: M51

Total intensity contours + apparent \vec{B} vectors at λ 6 cm (5.0 GHz) (100 m Effelsberg + VLA)

Optical image (HST)

э


Fletcher et al. (2009)

Physical origin Mathematical description Our 4 models

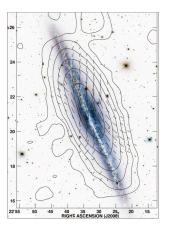
NGC 4217

Total intensity contours + apparent \vec{B} vectors at λ 6.2 cm (4.86 GHz) (VLA)

Optical image (DSS)

ヘロト ヘヨト ヘヨト ヘヨト

æ


Soida (2004)

Physical origin Mathematical description Our 4 models

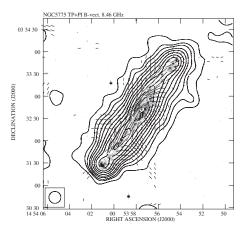
NGC 891

Total intensity contours + apparent \vec{B} vectors at λ 3.6 cm (8.35 GHz) (100 m Effelsberg)

Optical image (CFHT)

Krause (2009). © MPIfR Bonn & CFHT/Coelum

ヘロト ヘヨト ヘヨト ヘヨト

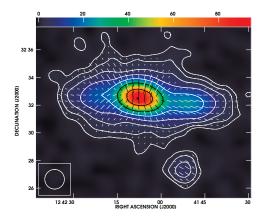

æ

Physical origin Mathematical description Our 4 models

NGC 5775

Total intensity contours + apparent \vec{B} vectors at λ 3.5 cm (8.46 GHz) (VLA + 100 m Effelsberg)

Hα image (VLT) Tüllmann et al. (2000)



ヘロト ヘヨト ヘヨト ヘヨト

Soida et al. (2011)

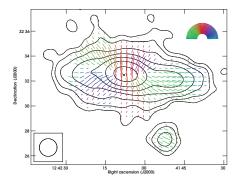
Physical origin Mathematical description Our 4 models

NGC 4631

ヘロト ヘヨト ヘヨト ヘヨト

æ

Mora & Krause (2013)


Total intensity contours + apparent \vec{B} vectors at λ 3.6 cm (8.35 GHz) (100 m Effelsberg)

Physical origin Mathematical description Our 4 models

NGC 4631

Total intensity contours at λ 3.6 cm (8.35 GHz) (100 m Effelsberg)

+ intrinsic \vec{B} vectors from λ 3.6 cm & λ 6.2 cm (VLA + 100 m Effelsberg)

Mora & Krause (2013)

Outline

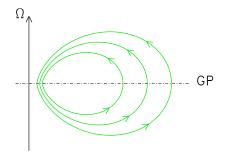
2 Physical origin

3 Mathematical description

Katia FERRIÈRE X-shape magnetic fields in galactic halos

Possible scenarios

Large-scale regular magnetic field


- ★ Conventional dynamo in the halo
- ★ Dynamo in the halo + large-scale wind from the disk or outflow from the central region
- ★ Dynamo in the disk + large-scale wind from the disk or outflow from the central region

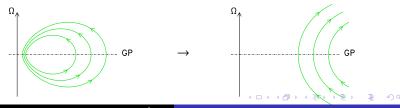
- Small-scale anisotropic random magnetic field
 - ★ Spiky wind ☞ extremely elongated magnetic loops

イロト イボト イヨト イヨト

Conventional dynamo in the halo

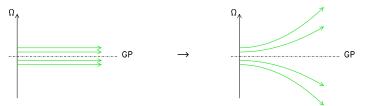
Dipole-like magnetic field sheared out in the azimuthal direction

Very different from an X-shape magnetic field


< ロト < 同ト < ヨト < ヨト

Halo dynamo + wind

• Oblique wind from the disk

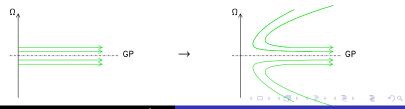

Champagne flow from the central region

Katia FERRIÈRE X-shape magnetic fields in galactic halos

Disk dynamo + wind

• Oblique wind from the disk

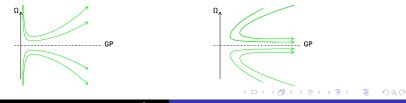
- Inphysical, because all field lines converge to the rotation axis Mathematically, $B_r → ∞$
- Must prevent field lines from reaching the rotation axis


< ロト < 同ト < ヨト < ヨト

Disk dynamo + wind

• Oblique wind from the disk + bipolar jet from the galactic center


• Champagne flow from the central region


Katia FERRIÈRE X-shape magnetic fields in galactic halos

Vertical symmetry

- Halo dynamo + wind
 - $\ll \vec{B}$ is necessarily anti-symmetric in z

- Disk dynamo + wind
 - $\ll \vec{B}$ is more likely symmetric in z (but could also be anti-symmetric)

Outline

2 Physical origin

3 Mathematical description

4 Our 4 models

Katia FERRIÈRE X-shape magnetic fields in galactic halos

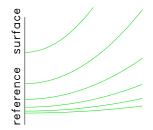
How to model X-shape magnetic fields ?

Input

Consider a magnetic configuration

defined by a network of field lines

- I shape of field lines
 - distribution of B_n on a reference surface


• Purpose

Derive an analytical expression for the associated $\vec{B}(r, \varphi, z)$

Method

Use the Euler potentials, α and β ,

defined such that $\vec{B} = \vec{\nabla} \alpha \times \vec{\nabla} \beta$

イロト イポト イヨト イヨト

Euler potentials

• Definition

2 scalar functions, α and β , such that

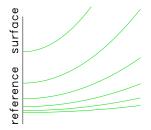
$$\vec{B} = \vec{\nabla}\alpha \times \vec{\nabla}\beta$$

Advantages

- * \vec{B} is automatically *divergence-free* $\vec{\nabla} \cdot \vec{B} = 0$
- $\star \alpha$ and β are constant along field lines
 - $\vec{B} \perp \vec{\nabla} \alpha \perp$ surfaces of $c^{st} \alpha \implies \vec{B}$ tg surfaces of $c^{st} \alpha$
 - $\vec{B} \perp \vec{\nabla} \beta \perp$ surfaces of $c^{st} \beta \implies \vec{B}$ tg surfaces of $c^{st} \beta$
- ★ Direct measure of magnetic flux

$$\vec{B} \cdot d\vec{S} = d\alpha \, d\beta$$

イロト イボト イヨト イヨト

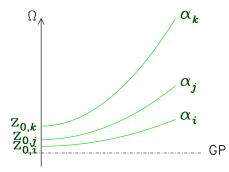

How to use the Euler potentials ?

• Consider a network of field lines

- shape of field lines
 - distribution of B_n on a reference surface

• Find 2 independent functions, α and β , with - α and β constant along field lines - $d\alpha \ d\beta = B_n \ dS$ on the reference surface

• Derive $\vec{B}(r, \varphi, z)$ using $\vec{B} = \vec{\nabla} \alpha \times \vec{\nabla} \beta$


イロト イボト イヨト イヨト

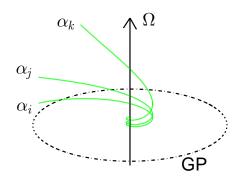
Poloidal, X-shape magnetic field

- Poloidal magnetic field
 - φ is c^{st} along field lines
 - \Rightarrow Take $\beta = \varphi$
- X-shape magnetic field

E.g.,
$$z = z_0 (1 + a r^2)$$

 $\Rightarrow z_0 = \frac{z}{1 + a r^2}$ is cst along field lines
 \Rightarrow Take $\alpha = fc(z_0)$

• Exponential decrease with z Take $\alpha = \alpha_0 \exp\left(-\frac{|z_0|}{H}\right)$

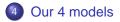


イロト イヨト イヨト イヨト

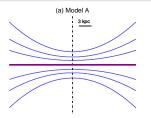
Spiral, X-shape magnetic field

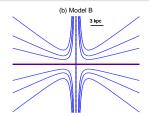
- Spiral magnetic field
 - E.g., $\varphi = \varphi_0 + f_{\varphi}(r, z)$
 - $\Rightarrow \varphi_0 = \varphi f_{\varphi}(r, z)$ is cst along field lines
 - \Rightarrow Take $\beta = \varphi_0$
- X-shape magnetic field
 - E.g., $z = z_0 (1 + a r^2)$ $\Rightarrow z_0 = \frac{z}{1 + a r^2}$ is cst along field lines \Rightarrow Take $\alpha = fc(z_0)$
- Exponential decrease with z

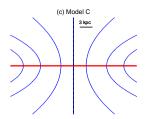
Take $\alpha = \alpha_0 \exp\left(-\frac{|z_0|}{H}\right)$

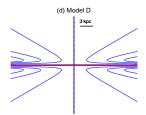

イロト イボト イヨト イヨト

Outline

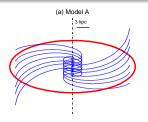

2 Physical origin

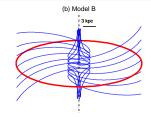

3 Mathematical description

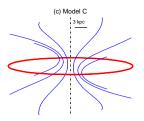


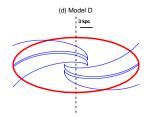

Katia FERRIÈRE X-shape magnetic fields in galactic halos

Poloidal field lines

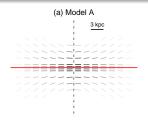


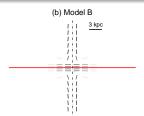


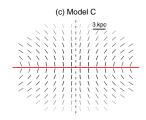

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

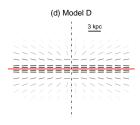

æ

Full, spiraling field lines






・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・


æ

Synchrotron maps

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・