The Cygnus Region - a prime target for TeV γ -ray emission.

Maria Krause

for the VERITAS Collaboration CRISM Workshop Montpellier Montpellier, 24th June 2014

Outline

2 VERITAS - A short description

3 The Cygnus Region observed with VERITAS

4 Conclusion

Why are we interested in the Cygnus Region?

- Large complex consisting of molecular clouds, active star forming region, many potential VHE accelerators
- Measurement of diffuse γ -radiation in the GeV and TeV range (Prodanović et al., 2006; Bi et al., 2009)

CRISM Montpellier 2014

Why are we interested in the Cygnus Region?

- This region is rich in VHE and HE emission.
- Discovery and idenfication of sources of diffuse γ-radiation
- VERITAS data from 2007 until 2012 (sky survey plus follow-up)
- Many sources discovered by HEGRA, Milagro and Fermi LAT

Cygnus Region

Conclusion

The VERITAS Cherenkov Array.

The Very Energetic Radiation Imaging Telescope Array System

- ✓ Four telescopes with a diameter of 12m, located in Arizona (US)
- ✓ Camera: 499 pixels (Upgrade in summer 2012)
- ✓ Field of View: 3.5°
- ✓ Energy range: \approx 0.1-30TeV
- ✓ Energy resolution: 15-20% at 1TeV
- ✓ Angular resolution: < 0.1° at a zenith angle of 20°</p>
- ✓ Sensitivity: 1% Crab < 30h</p>

Maria Krause

CRISM Montpellier 2014

Conclusion

VERITAS Cygnus Sky Survey.

- Sky survey data from 2007 to 2009 (115h + 55h follow-up observations)
- Observation period between April and June, September and November

VERITAS

Cygnus Region

VER J2019+407 (γ-Cygni),

- First hints of γ-ray emission near SNR G78.2+2.1 during survey → Follow-up observations
- 18.6h, wobble mode, 3 and 4 telescope data
- 7.5 σ post-trial significance
- Pulsar and the centroid of *Fermi* emission are displaced from VHE γ-ray source

Extension of 0.23° \pm 0.03° $^{\circ}_{stat-0.02^{\circ}sys}^{+0.04^{\circ}}$

VERITAS extent

Aliu et al., ApJ 770, 93 (2013)

<u>VER J2019+407 (γ-Cygni).</u>

- First hints of γ -ray emission near SNR G78.2+2.1 during survey \rightarrow Follow-up observations
- 18.6h, wobble mode, 3 and 4 telescope data
- 7.5 σ post-trial significance
- Pulsar and the centroid of Fermi emission are displaced from VHE γ -ray source

VERITAS

Cygnus Region

Conclusion

VER J2019+407 (γ-Cygni).

Energy [TeV]

Possible explanations: Shocks at the interaction of the SN ejecta and the medium PWN of PSR J2021+4026 PWN of unknown pulsar in line-of-sight toward SNR

Maria Krause

CRISM Montpellier 2014

Aliu et al., ApJ 783, 16 (2014)

The first unidentified γ -ray source at very high energies (E>100GeV)

- Previous observations with HEGRA, Milagro, *Fermi* LAT etc.
- MGRO J2031+41: bright emission over a larger area of 3°×0.9° (Abdo et al., 2007)
- Data from 2009-2012, wobble and ON mode
- 48.2h, 3 and 4 telescope data, 8.7 σ
- \Rightarrow VER J2031+415
 - Hard spectrum, single PL: $\Gamma = 2.05$

Aliu et al., ApJ 783, 16 (2014)

The first unidentified γ -ray source at very high energies (E>100GeV)

- Previous observations with HEGRA, Milagro, *Fermi* LAT etc.
- MGRO J2031+41: bright emission over a larger area of 3°×0.9° (Abdo et al., 2007)
- Data from 2009-2012, wobble and ON mode
- 48.2h, 3 and 4 telescope data, 8.7 σ
- \Rightarrow VER J2031+415
 - Hard spectrum, single PL: $\Gamma = 2.05$

PSR J2032+4127

Aliu et al., ApJ 783, 16 (2014)

Multiwavelength Studies

- Blind search discovery with *Fermi* LAT: PSR J2032+4127 with *P* = 142*ms*
- Milagro observations with softer spectral index: $\Gamma = 3.2 \pm 0.2$
- → Integration over larger region
 - Observations at radio, X-ray and IR wavelengths
- \Rightarrow TeV γ -ray emission in a void

Aliu et al., ApJ 783, 16 (2014)

Scenarios

- Stellar winds from massive stars located in this region
- SNR expanding into the surrounding medium
- → No detected SNR shell but could be PWN
- PWN associated with *Fermi* LAT pulsar PSR J2032+4127
- Properties of pulsar are consistent with TeV PWN scenarios

MGROJ2019+37.

- Data from 04/2010 to 12/2010
- 70h, wobble mode
- Point and extended source analysis
- Two separate VHE emission regions
- ⇒ VER J2016+371: 5.8 σ , Γ = 2.3, point source, consistent with CTB 87
- ⇒ VER J2019+368: 7.2 σ , Γ = 1.75, extended emission, possibly multiple sources

Aliu et al., arXiv: 1404.1841 (2014)

Better angular resolution of VERITAS allows for a sharper image

12

MGROJ2019+37.

Aliu et al., arXiv: 1404.1841 (2014)

Radio image overlaid with VERITAS significance contours

What will be the next steps?

Complete analysis of the whole Cygnus region

- It's more than just an analysis of the sky survey!
- Data of about 330h (2007 to 2014)
- Average elevation angle of 70°

Why?

- Better analysis technique for extended sources and better quality cuts available
- Using Boosted Decision Trees and ctools
- Excellent opportunity for an efficient increase in TeV source detections, with the potential for discovery of unexpected VHE emission and/or source classes

Conclusion

Conclusion.

- Cygnus region is a very active region of VHE and HE $\gamma\text{-ray}$ emission
- Many TeV sources and potential sources of cosmic ray acceleration are already identified
- Probably more sources available in this region
- Understanding the nature of the diffuse γ -ray emission coming from the Cygnus region
- Data available from 2007 until 2014 ⇒ will be reanalyzed using advanced analysis techniques
- ⇒ Boosted Decision Trees
 - Obtain a higher sensitivity!

Aim

• Develop a tool to analyze extended sources and diffuse emission with ctools (work in progress)

Maria Krause

VERITAS

Cygnus Region

Conclusion

Questions?

I have no idea what you're talking about!!!

Backup

Maria Krause

Conclusion

What are Boosted Decision Trees.

Toolkit for Multivariate Data Analysis with ROOT (TMVA) provides an algorithm called Boosted Decision Trees (BDTs).

Roe et al., Nucl.Instrum.Meth. A543 (2005) 577-584

- Start with training sample at the root node
- Split the training sample at node into two ⇒ using cut that gives best separation gain
- Classify the terminal leaves as signal and background (depending on the majority of events or given a S/B propability)
- Reweight all incorrect decisions and retrain them ⇒ Boosting

Why do we want to use Boosted Decision Trees?

- Boosted Decision Trees (BDTs) are a useful tool for the Gamma-Hadron-Separation
- · Better performance than the rectangular cuts
- Takes nonlinear correlations into account
- Simple to understand and interpret
- Achieve a higher sensitivity (see talk of Elisa during winter collaboration meeting)
- Already implemented in eventdisplay software but needs to be studied and optimized

How does it work?

- Signal training sample: MC simulations
- Background training sample: either data or MC simulations
- Cuts can be optimized in several energy and zenith angle bins
- TMVA weight files contain all the cut information, can be directly used in the effective area code

Conclusion

The output of TMVA

The cut value depends on the number of signal and background events

a)
$$\frac{S}{B} = 1 \Rightarrow$$
 cut=-0.06
b) $\frac{S}{B} = \frac{1}{10} \Rightarrow$ cut=0.16

Maria Krause