Cosmic-Ray Diffusion in Magnetized Turbulence

Robert C. Tautz

Zentrum für Astronomie und Astrophysik Technische Universität Berlin

– Cosmic rays & their interstellar medium environment CRISM-2014 –

24-27 June 2014, Montpellier

The collaborators

Reinhard Schlickeiser

Ruhr-Universität Bochum

lan Lerche

Andreas Shalchi

University of Manitoba

坂井 純一

Toyama University

Martin-Luther-Universität Halle

Horst	Fichtner	(Ruhr-Universitat	Bochum)

- Andreas Kopp (Christian-Albrechts-Universität zu Kiel)
- Alexander Dosch (University of Alabama in Huntsville)
- Marian Lazar (Ruhr-Universität Bochum)
- Urs Schaefer-Rolffs (Leibniz-Institut Kühlungsborn)
- Ioannis Kourakis (Queen's University Belfast)
- Diego Dominici (State University of New York at New Paltz)
- Students from TU and FU Berlin

I. Introduction

Propagation of cosmic rays

- Photons \rightarrow (almost) direct path to observer
- Protons \rightarrow permament scattering and deflections

R.C. Tautz

Propagation of cosmic rays

- Photons \rightarrow (almost) direct path to observer
- Protons \rightarrow permament scattering and deflections

Propagation of cosmic rays

- Photons \rightarrow (almost) direct path to observer
- Protons \longrightarrow permament scattering and deflections

The main processes

- . . with matter \longrightarrow gamma radiation
- ... with magnetic fields \rightarrow gamma radiation

The main processes

- . . with matter \longrightarrow gamma radiation
- \bullet . . . with magnetic fields $\ \longrightarrow$ gamma radiation

H.E.S.S. telescope

R.C. Tautz

The problem

Magnetic fields in space

- Magnetic fields are omnipresent¹
 - Galactic magnetic fields
 - Interplanetary magnetic fields
- Field strengths typically μ G-nT
- In most cases: two components

Beck et al., Annu. Rev. Astron. Astrophys. <u>34</u>, 155 (1996)

R.C. Tautz

The problem

Magnetic fields in space

- Magnetic fields are omnipresent¹
 - Galactic magnetic fields
 - Interplanetary magnetic fields
- Field strengths typically μ G-nT
- In most cases: two components
 - Regular, large-scale
 - 2 Turbulent, small-scale
 - comparable field strengths!
- Usual assumption

 $\boldsymbol{B}=B_0\,\hat{\boldsymbol{e}}_z+\delta\boldsymbol{B}(\boldsymbol{r},t)$

homogeneous turbulent

Beck et al., Annu. Rev. Astron. Astrophys. <u>34</u>, 155 (1996)

II. Diffusion-Convection Problems

The ansatz

Can we do a diffusion-convection description?

• Distribution function: solve a *transport equation*¹

$$\frac{\partial f}{\partial t} - S = \nabla \cdot \left(\boldsymbol{\kappa}_{nj} \cdot \nabla f - \boldsymbol{v} f \right) + \frac{\partial}{\partial \boldsymbol{p}} \left(p^2 \boldsymbol{D}_{\boldsymbol{p}} \frac{\partial}{\partial \boldsymbol{p}} \frac{f}{p^2} - \dot{\boldsymbol{p}} f \right) + .$$

¹ Parker, Planet. Space Sci. <u>13</u>, 9 (1965)
 ² RCT, Shalchi, & Schlickeiser, Astrophys. J. <u>685</u>, L165 (2008)
 ³ Shalchi, RCT, & Rempel, Plasma Phys. Contr. Fusion <u>53</u>, 105016 (2011)
 ⁴ RCT & Shalchi, Astrophys. J. <u>744</u>, 125 (2012)

R.C. Tautz

The ansatz

Can we do a diffusion-convection description?

• Distribution function: solve a *transport equation*¹

$$\frac{\partial f}{\partial t} - S = \nabla \cdot \left(\boldsymbol{\kappa}_{nj} \cdot \nabla f - \boldsymbol{v} f \right) + \frac{\partial}{\partial \boldsymbol{p}} \left(p^2 \boldsymbol{D}_{\boldsymbol{p}} \frac{\partial}{\partial \boldsymbol{p}} \frac{f}{p^2} - \dot{\boldsymbol{p}} f \right) + .$$

• Diffusion tensor: approximation required

$$\boldsymbol{\kappa} = \begin{pmatrix} \boldsymbol{\kappa}_{\perp} & \boldsymbol{\kappa}_{\mathrm{A}} & \boldsymbol{0} \\ -\boldsymbol{\kappa}_{\mathrm{A}} & \boldsymbol{\kappa}_{\perp} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\kappa}_{\parallel} \end{pmatrix}$$

Three main effects

κ_{||}: Diffusion along² B
 κ_⊥: Diffusion across³ B
 κ_A: Drift effects⁴

¹ Parker, Planet. Space Sci. <u>13</u>, 9 (1965)
 ² RCT, Shalchi, & Schlickeiser, Astrophys. J. <u>685</u>, L165 (2008)
 ³ Shalchi, RCT, & Rempel, Plasma Phys. Contr. Fusion <u>53</u>, 105016 (2011)
 ⁴ RCT & Shalchi, Astrophys. J. <u>744</u>, 125 (2012)

R.C. Tautz

The analytical calculation

Important parameter: parallel mean-free path

• Averaging^{1,2} over all pitch-angles $\mu = \cos \angle (\mathbf{v}, \mathbf{B}_0)$

$$\lambda_{\parallel} \propto \kappa_{\parallel} \propto \int_{-1}^{1} \mathrm{d}\mu \; rac{\left(1-\mu^{2}
ight)^{2}}{D_{\mu\mu}(\mu)}$$

¹ Hasselmann & Wibberenz, *Z. Geophys.* <u>34</u>, 353 (1968) ² Earl, *Astrophys. J.* <u>193</u>, 231 (1974)

The analytical calculation

Important parameter: parallel mean-free path

• Averaging^{1,2} over all pitch-angles $\mu = \cos \angle (\mathbf{v}, \mathbf{B}_0)$

$$\lambda_{\parallel} \propto \kappa_{\parallel} \propto \int_{-1}^{1} \mathrm{d}\mu \; rac{\left(1-\mu^{2}
ight)^{2}}{D_{\mu\mu}(\mu)}$$

• Taylor-Green-Kubo formula for the Fokker-Planck coefficient

$$D_{\mu\mu} = \int_0^\infty \mathrm{d}t \, \left\langle \dot{\mu}(t) \, \dot{\mu}^*(0) \right\rangle$$

• From the equation of motion (Newton-Lorentz eq.)

$$\dot{\mu} = \frac{\partial}{\partial t} \left(\frac{\mathbf{v}_{\parallel}}{\mathbf{v}} \right) \stackrel{\text{static}}{=} \frac{\dot{\mathbf{v}}_{\parallel}}{\mathbf{v}} = \frac{\Omega}{\mathbf{v}} \left(\mathbf{v}_{\mathsf{x}} \frac{\delta B_{\mathsf{y}}}{B_{\mathsf{0}}} - \mathbf{v}_{\mathsf{y}} \frac{\delta B_{\mathsf{x}}}{B_{\mathsf{0}}} \right)$$

1

unknown velocity components $v_{x,y}$ unknown position in $\delta B_{x,y}(\mathbf{r}, t)$

¹ Hasselmann & Wibberenz, *Z. Geophys.* <u>34</u>, 353 (1968) ² Earl, *Astrophys. J.* <u>193</u>, 231 (1974)

The microphysics

Resonant wave-particle interactions

- Quasi-linear theory¹
 - $z(t) = v \mu t$
 - sharp resonance

¹ Jokipii, Astrophys. J. <u>146</u>, 480 (1966) ² Owens, Astrophys. J. <u>191</u>, 235 (1974) ³ RCT & Lerche, Phys. Lett. A <u>374</u>, 4573

The microphysics

Resonant wave-particle interactions

- Quasi-linear theory¹
 - $z(t) = v \mu t$
 - sharp resonance

Reality

- stochastic motion
- resonance broadening^{2,3}

¹ Jokipii, Astrophys. J. <u>146</u>, 480 (1966) ² Owens, Astrophys. J. <u>191</u>, 235 (1974) ³ RCT & Lerche, Phys. Lett. A <u>374</u>, 4573

- Example: Second-order QLT^{1,2}
 - Parallel diffusion
 - stochastic particle orbits using QLT
 - describe resonance broadening

R.C. Tautz

Example: Second-order QLT^{1,2}

- Parallel diffusion
 - stochastic particle orbits using QLT
 - describe resonance broadening

¹ Shalchi, *Phys. Plasmas* <u>12</u>, 052905 (2005) ² RCT, Shalchi, & Schlickeiser, *Astrophys. J.* <u>685</u>, L165 (2008)

R.C. Tautz

R.C. Tautz

The consequence

Calculation: quasi-linear vs. non-linear

- Hillas: no confinement of high-energy particles¹ if $v_{\parallel} > \Omega L_{max}$
- Extragalactic origin if $E \gtrsim 10^{17} \,\mathrm{eV}$
 - does the deflection² allow for a correlation with AGNs?³

¹ Hillas, Annu. Rev. Astron. Astrophys. <u>22</u>, 425 (1984) ² Shalchi, RCT, et al., *Phys. Rev. D* <u>80</u>, 023012 (2009) ³ Abraham et al., *Science* <u>318</u>, 938 (2007)

The consequence

Calculation: quasi-linear vs. non-linear

- SOQLT: confinement of high-energy particles¹ if $v_{\parallel} > \Omega L_{max}$
- Extragalactic origin if $E \gtrsim 10^{17} \,\mathrm{eV}$
 - does the deflection² allow for a correlation with AGNs?³

¹ Hillas, Annu. Rev. Astron. Astrophys. <u>22</u>, 425 (1984) ² Shalchi, RCT, et al., *Phys. Rev. D* <u>80</u> 023012 (2009) ³ Abraham et al., *Science* <u>318</u>, 938 (2007)

Non-linear guiding center theory

- Assume that particles follow field lines
 - $\ensuremath{\,\,\mathrm{ser}}$ write the field line equation as

$$\mathrm{d}x = \frac{\delta B_x}{B_0} \,\mathrm{d}z$$

¹ Matthaeus, Qin, Bieber, & Zank, *Astrophys. J.* <u>590</u>, L53 (2003) ² le Roux et al., *Astrophys. J.* <u>716</u>, 671 (2010)

R.C. Tautz

Non-linear guiding center theory

Assume that particles follow field lines
 write the field line equation as

$$\mathbf{v}_{\mathbf{x}} = \frac{\delta B_{\mathbf{x}}}{B_0} \mathbf{v}_{\mathbf{z}}$$

• Multiply by v_x at some other time

¹ Matthaeus, Qin, Bieber, & Zank, *Astrophys. J.* <u>590</u>, L53 (2003) ² le Roux et al., *Astrophys. J.* <u>716</u>, 671 (2010)

 $\mathsf{R},\mathsf{C},\,\mathsf{Tautz}$

Non-linear guiding center theory

Assume that particles follow field lines
 write the field line equation as

$$\mathbf{v}_{\mathbf{x}} = \frac{\delta B_{\mathbf{x}}}{B_0} \mathbf{v}_{\mathbf{z}}$$

• Multiply by v_x at some other time

 $\ensuremath{\,\mbox{\scriptsize sixth-order}}$ correlation function

$$\kappa_{\perp} \propto \int \mathrm{d}^{3}k \, \left\langle v_{z}(t) \, v_{z}(0) \, \delta B_{x}(t) \, \delta B_{x}(0) \, e^{i k \cdot (x(t) - x(0))} \right\rangle$$

¹ Matthaeus, Qin, Bieber, & Zank, Astrophys. J. <u>590</u>, L53 (2003) ² le Roux et al., Astrophys. J. <u>716</u>, 671 (2010)

Non-linear guiding center theory

Assume that particles follow field lines
 write the field line equation as

$$\mathbf{v}_{\mathbf{x}} = \frac{\delta B_{\mathbf{x}}}{B_0} \mathbf{v}_{\mathbf{z}}$$

- Multiply by v_x at some other time
 - \blacksquare sixth-order correlation function

$$\kappa_{\perp} \propto \int \mathrm{d}^{3}k \, \left\langle \lfloor v_{z}(t) \, v_{z}(0) \rfloor \lfloor \delta B_{x}(t) \, \delta B_{x}(0) \rfloor \lfloor e^{ik \cdot (x(t) - x(0))} \rfloor \right\rangle$$

- Conventional non-linear guiding center (NLGC) theory^{1,2}
 - Split into three second-order correlation functions
 - 2 Assume diffusive behavior
 - Oalculate diffusion coefficient

¹ Matthaeus, Qin, Bieber, & Zank, Astrophys. J. <u>590</u>, L53 (2003) ² le Roux et al., Astrophys. J. <u>716</u>, 671 (2010)

Turbulent particle transport can be non-Markovian

- General behavior: $\langle (\Delta x)^2 \rangle \propto t^{\alpha+1}$ or $\kappa \propto t^{\alpha}$ • "diffusion" requires $\alpha = 0!$
- Three cases:

¹ RCT & Shalchi, *J. Geophys. Res.* <u>115</u>, A03104 (2010) ² Jokipii, Kóta, & Giacalone, *Geophys. Res. Lett.* <u>20</u>, 1759 (1993) ³ Qin, Matthaeus, & Bieber, *J. Geophys. Res.* <u>29</u>, 1048 (2002)

R.C. Tautz

¹ RCT & Shalchi, J. Geophys. Res. <u>115</u>, A03104 (2010)
 ² Jokipii, Kóta, & Giacalone, Geophys. Res. Lett. <u>20</u>, 1759 (1993)
 ³ Qin, Matthaeus, & Bieber, J. Geophys. Res. <u>29</u>, 1048 (2002)

R.C. Tautz

Example: unified non-linear theory¹

Calculate 4th-order correlation as

$$\langle \dots \rangle = \frac{1}{4} \int_{-1}^{1} \mathrm{d}\mu \int_{-1}^{1} \mathrm{d}\mu' \int \mathrm{d}^{3}r \dots f(\mu, r, t)$$

with a Fokker-Planck solution $f(\mu, \mathbf{r}, t)$

Creative mathematical procedures required²

¹ Shalchi, Astrophys. J. <u>720</u>, L127 (2010) ² Lerche & RCT, Phys. Plasmas <u>18</u>, 082305 (2011) ³ Shalchi, RCT, & Rempel, Plasma Phys. Contr. Fusion <u>53</u>, 105016 (2011)

R.C. Tautz

Example: unified non-linear theory¹

• Calculate 4th-order correlation as

$$\langle \dots \rangle = \frac{1}{4} \int_{-1}^{1} \mathrm{d}\mu \int_{-1}^{1} \mathrm{d}\mu' \int \mathrm{d}^{3}r \dots f(\mu, r, t)$$

with a Fokker-Planck solution $f(\mu, r, t)$

- Creative mathematical procedures required²
- Time dependent diffusion
- Agreement with numerical test-particle simulations³

R.C. Tautz

Shalchi, Astrophys. J. <u>720</u>, L127 (2010)

²Lerche & RCT, Phys. Plasmas <u>18</u>, 082305 (2011)

³Shalchi, RCT, & Rempel, *Plasma Phys. Contr. Fusion* <u>53</u>, 105016 (2011)

The alternatives

Magnetic field-line random walk

- Compound diffusion^{1,2}
- Bohm diffusion

Scaling relations

- Simple energy and field strength dependence³
- Estimates based on decorrelation mechanisms⁴

Other approaches

- Percolation theory⁵
- Markov processes⁶ and Lévy walks⁷

¹Webb et al., Astrophys. J. <u>651</u>, 211 (2006)
 ²RCT, Shalchi, & Schlickeiser, Astrophys. J. <u>672</u>, 642 (2008)
 ³Reinecke, Moraal, & McDonald, J. Geophys. Res. <u>98</u>, 9417 (1993)
 ⁴Hauff et al., Astrophys. J. <u>711</u>, 997 (2010)
 ⁵Isichenko, Rev. Mod. Phys. <u>64</u>, 961 (1992)
 ⁶Lemons, Phys. Plasmas <u>19</u>, 012306 (2012)
 ⁷Zimbardo et al., Astrophys. J. <u>778</u>, 35 (2013)

R.C. Tautz

III. Electromagnetic Turbulence

The approach

Turbulence model

- Fully developed turbulence
- Required:

- energy spectrum
- geometry

¹ Shalchi, Bieber, Matthaeus, & Schlickeiser, *Astrophys. J.* <u>642</u>, 230 (2006) ² RCT & Lerche, *J. Math. Phys.* <u>54</u>, 053303 (2013) ³ Alouani-Bibi & le Roux, *Astrophys. J.* 781, 93 (2014)

R.C. Tautz

The approach

Turbulence model

- Fully developed turbulence
- Required:
 - energy spectrum
 - 2 geometry
 - Ø dynamical behavior

¹ Shalchi, Bieber, Matthaeus, & Schlickeiser, *Astrophys. J.* <u>642</u>, 230 (2006) ² RCT & Lerche, *J. Math. Phys.* <u>54</u>, 053303 (2013) ³ Alouani-Bibi & le Roux, *Astrophys. J.* <u>781</u>, 93 (2014)

R.C. Tautz

The spectrum

Turbulence model

- Correlation function
 - $\langle \delta B_j(\mathbf{r}, t) \delta B_n(\mathbf{r}', t') \rangle$
- Fourier transformation

 $\langle \delta B_j(\mathbf{k}) \, \delta B_n(\mathbf{k}') \rangle$

Image: plus Corrsin hypothesis³

${\sf Measurements}^{1,2}$

¹ Bruno & Carbone, *Living Rev. Solar Phys.* <u>2</u> (2005) ² Wicks et al., *Astrophys. J.* <u>778</u>, 177 (2013) ³ RCT & Shalchi, *Phys. Plasmas* <u>17</u>, 122313 (2010)

R.C. Tautz

The spectrum

Turbulence model

- Correlation function
 - $\langle \delta B_j(\mathbf{r}, t) \delta B_n(\mathbf{r}', t') \rangle$
- Fourier transformation

 $\langle \delta B_j(\mathbf{k}) \, \delta B_n(\mathbf{k}') \rangle$

- Image: plus Corrsin hypothesis³
- Expressible as

$$\frac{G(\mathbf{k})}{8\pi k^2} \left(\delta_{jn} - \frac{k_j k_n}{k^2} \right)$$

Measurements provide G(|k|)
 Solar wind: Kolmogorov¹

¹Bruno & Carbone, Living Rev. Solar Phys. <u>2</u> (2005)
 ²Wicks et al., Astrophys. J. <u>778</u>, 177 (2013)
 ³RCT & Shalchi, Phys. Plasmas <u>17</u>, 122313 (2010)

R.C. Tautz

CRISM-2014

Measurements^{1,2}

The geometry

Basic analytical models

- Need to know the <u>geometry</u> G(k_{||}, k_⊥)
 particle transport requires integration over k
- Basic geometries

Slab: depends only on k_{\parallel} $\ll \delta B(z)$ varies along B_0 2D: depends only on k_{\parallel}

 $\mathbf{w} \quad \delta B(x, y) \text{ varies } \perp \text{ to } B_0$

The geometry

Basic analytical models

- Need to know the <u>geometry</u> G(k_{||}, k_⊥)
 particle transport requires integration over k
- Basic geometries

Slab: depends only on k_{\parallel} $\delta B(z)$ varies along B_0 **1**37 2D: depends only on k_{\perp} $\delta B(x, y)$ varies \perp to B_0 67 Composite: superposition of slab and 2D "quasi-3D" turbulence ß sotropic: no preferred direction $\delta \boldsymbol{B}$ independent of θ and ϕ 3 Others: e.g., Goldreich-Sridhar perpendicular-parallel energy exchange R

The simulation

How to obtain transport coefficients numerically?

- Trace trajectories of test particles¹⁻⁴
 w use relations (Δz)² ∝ κ ∝ λ
- Time-dependent ("running") diffusion coefficients

e.g.,
$$\kappa_{\parallel}(t) = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \left(\Delta z(t) \right)^2 \right\rangle \approx \frac{1}{2t} \left\langle \left(\Delta z(t) \right)^2 \right\rangle$$

Giacalone & Jokipii, *Astrophys. J.* <u>520</u>, 204 (1999)

²Zimbardo, Veltri, & Pommois, *Phys. Rev. E <u>61</u>,* 1940 (2000)

³RCT, Comput. Phys. Commun. <u>181</u>, 71 (2010)

⁴ Laitinen, Dalla, & Marsh, *Astrophys. J. Lett.* <u>773</u>, L29 (2013)

R.C. Tautz

The simulation

How to obtain transport coefficients numerically?

- Trace trajectories of test particles¹⁻⁴
 w use relations (Δz)² ∝ κ ∝ λ
- Time-dependent ("running") diffusion coefficients

e.g.,
$$\kappa_{\parallel}(t) = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \left(\Delta z(t) \right)^2 \right\rangle \approx \frac{1}{2t} \left\langle \left(\Delta z(t) \right)^2 \right\rangle$$

• Generate artificial turbulence

superposition of plane waves
$$1.3$$

$$\delta \boldsymbol{B}(\boldsymbol{r}) \propto \mathfrak{Re} \sum_{n=1}^{N} \hat{\boldsymbol{e}'} \sqrt{G(k_n)} \cos(k_n \boldsymbol{z'} - \omega(k_n)t + \beta_n)$$

• Turbulence power spectrum $G(k) \propto k^{-5/3}$

¹Giacalone & Jokipii, *Astrophys. J.* <u>520</u>, 204 (1999)

2²Zimbardo, Veltri, & Pommois, *Phys. Rev. E <u>61</u>,* 1940 (2000)

³RCT, Comput. Phys. Commun. <u>181</u>, 71 (2010)

⁴ Laitinen, Dalla, & Marsh, Astrophys. J. Lett. <u>773</u>, L29 (2013)

R.C. Tautz

The side note

How many wave modes do we need?

- Investigate diffusive behavior with a (quasi) Lyapunov technique¹
- A minimum of 16 wave modes is required

¹ RCT & Dosch, *Phys. Plasmas* <u>20</u>, 022302 (2013)

R.C. Tautz

Turbulent electric fields

• Include¹ (MHD) plasma waves:

 $\omega = \pm \, \mathbf{v}_{\mathsf{A}} \, \mathbf{k}_{||}$

- Past magnetosonic waves
- Whistler waves²
- Alfvén speed $v_{\rm A} = B_0 / \sqrt{4\pi\rho}$

¹RCT, Shalchi, & Schlickeiser, J. Phys. G <u>32</u>, 1045 (2006)
 ²Vocks et al., Astrophys. J. <u>627</u>, 540 (2005)
 ³Petrosian, Space Sci. Rev. <u>173</u>, 535 (2012)

R.C. Tautz

Turbulent electric fields

- Include¹ (MHD) plasma waves:
 - Alfvén waves

$$\omega = \pm \frac{\mathbf{v}_{\mathsf{A}} \mathbf{k}_{||}}{\mathbf{k}_{||}}$$

- Alfvén speed $v_{\rm A} = B_0 / \sqrt{4\pi\rho}$
- Faraday: turbulent electric fields

$$\delta \boldsymbol{B} = \frac{c}{\omega(\boldsymbol{k})} \, \boldsymbol{k} \times \delta \boldsymbol{E}$$

• Diffusion in momentum space: Fermi-like acceleration

¹ RCT, Shalchi, & Schlickeiser, *J. Phys. G* <u>32</u>, 1045 (2006) ² Vocks et al., *Astrophys. J.* <u>627</u>, 540 (2005) ³ Petrosian, *Space Sci. Rev.* <u>173</u>, 535 (2012)

Stochastic acceleration

• Evolution of a velocity distribution function $f \propto p^{-a}$

¹ RCT, Plasma Phys. Contr. Fusion <u>52</u>, 045016 (2010)
 ² RCT, Lerche, & Kruse, Astron. Astrophys. <u>555</u>, A101 (2013)

R.C. Tautz

Stochastic acceleration

- Evolution of a velocity distribution function $f \propto p^{-a}$
- Momentum diffusion¹ mostly near $v = v_A$
 - Image: modified spectral index²

¹RCT, Plasma Phys. Contr. Fusion <u>52</u>, 045016 (2010)

²RCT, Lerche, & Kruse, Astron. Astrophys. <u>555</u>, A101 (2013)

R.C. Tautz

The fully numerical approach

Diffusion in MHD turbulence

- 2-step procedure:¹⁻³
 - evolution of MHD turbulence⁴
 - trace test-particle trajectories

- Beresnyak, Yan, & Lazarian, Astrophys. J. <u>728</u>, 60 (2011)
- Lange & Spanier, Astron. Astrophys. <u>546</u>, A51 (2012)
- Nakwacki & Peralta-Ramos, ArXiv:1312.7822 (2014)
- ⁴ Müller, in *Interdisciplinary Aspects of Turbulence*, Berlin:Springer, p. 223 (2009)
- ⁵RCT & Triptow, Astrophys. Space Sci. 348, 133 (2013)

R.C. Tautz

The fully numerical approach

Diffusion in MHD turbulence

- 2-step procedure:¹⁻³
 - evolution of
 MHD turbulence⁴
 - trace test-particle trajectories
- Advantages:
 - plasma instabilities^{3,5}
 - dynamical turbulence
- But: limited resolution

Beresnyak, Yan, & Lazarian, Astrophys. J. <u>728</u>, 60 (2011)

R.C. Tautz

Lange & Spanier, Astron. Astrophys. <u>546</u>, A51 (2012)

³Nakwacki & Peralta-Ramos, ArXiv:1312.7822 (2014)

⁴Müller, in *Interdisciplinary Aspects of Turbulence*, Berlin:Springer, p. 223 (2009)

^bRCT & Triptow, Astrophys. Space Sci. 348, 133 (2013)

The reality

R.C. Tautz

"Maltese cross" model

 \bullet Solar wind measurements 1 "justify" the slab/2D composite model ^

¹ Matthaeus, *J. Geophys. Res.* <u>95</u>, 673 (1990) ² Bieber et al., *J. Geophys. Res.* <u>101</u>, 2511 (1996) ³ Weinhorst & Shalchi, *MNRAS* <u>403</u>, 287 (2010) ⁴ Rausch & RCT, *MNRAS* <u>428</u>, 2333 (2013)

"Maltese cross" model

- \bullet Solar wind measurements 1 "justify" the slab/2D composite model ^
- Fit model allows for $1D \rightarrow 3D$ interpolation^{3,4}

¹ Matthaeus, *J. Geophys. Res.* <u>95</u>, 673 (1990) ² Bieber et al., *J. Geophys. Res.* <u>101</u>, 2511 (1996) ³ Weinhorst & Shalchi, *MNRAS* <u>403</u>, 287 (2010) ⁴ Rausch & RCT, *MNRAS* <u>428</u>, 2333 (2013)

"Space weather"

Anisotropy-time profiles^{1,2}

- Model measured profiles
 - time resolved
 - pitch-angle resolved

¹ Dröge & Kartavykh, *Astrophys. J.* <u>693</u>, 69 (2009) ² Saíz et al., *Astrophys. J.* <u>672</u>, 650 (2008)

R.C. Tautz

"Space weather"

Anisotropy-time profiles^{1,2}

- Model measured profiles
 - time resolved
 - pitch-angle resolved
- Fit to a diffusion solution

¹ Dröge & Kartavykh, *Astrophys. J.* <u>693</u>, 69 (2009) ² Saíz et al., *Astrophys. J.* <u>672</u>, 650 (2008)

R.C. Tautz

IV. Solar Wind

The comparison

Dissipation and the particle mass

- Low-energetic Solar cosmic rays 10 keV to 100 GeV R 10^{3}
- Palmer consensus range²:
 - agreement² 37

¹ RCT & Shalchi, *J. Geophys. Res.* <u>118</u>, 642 (2013)

Bieber, Matthaeus, et al., Astrophys. J. <u>42</u>0, 294 (1994)

R.C. Tautz

IV. Solar Wind

The comparison

Dissipation and the particle mass

- Low-energetic Solar cosmic rays ☞ 10 keV to 100 GeV 10³
- Palmer consensus range²:
 agreement²
- Turbulence model¹
 - dissipation:
 electrons
 vs. protons
 - composite: Alfvén waves + 2D component

¹₂RCT & Shalchi, J. Geophys. Res. <u>118</u>, 642 (2013)

²Bieber, Matthaeus, et al., *Astrophys. J. <u>420</u>, 294 (1994)*

R.C. Tautz

Curved mean field

Global transformation¹
 r field-aligned diffusion tensor ¹

$$\boldsymbol{\kappa}_{\mathsf{global}} = \mathsf{A} \cdot \boldsymbol{\kappa} \cdot \mathsf{A}^{\mathsf{T}}$$

• Useful for SDE methods

¹ Effenberger et al., Astrophys. J. <u>750</u>, 108 (2012)
 ² Parker, Astrophys. J. <u>128</u>, 664 (1958)
 ³ He & Wan, Astrophys. J. <u>747</u>, 38 (2012)
 ⁴ RCT et al., J. Geophys. Res. <u>116</u>, A02102 (2011)

R.C. Tautz

Curved mean field

Global transformation¹ field-aligned diffusion tensor z 37

$$\boldsymbol{\kappa}_{\mathsf{qlobal}} = \mathsf{A} \cdot \boldsymbol{\kappa} \cdot \mathsf{A}^{\mathsf{T}}$$

- Useful for SDE methods.
- Alternative: focusing length L

 $L^{-1} = \nabla \cdot \frac{B}{B} \approx \frac{1}{B} \frac{\partial B}{\partial z}$

• Applications:

2

magnetic bottles Parker spiral²⁻⁴

Adiabatic focusing

- Test analytical results¹
 - \blacksquare assume L = const so that²

$$B_{\{x,y\}} \approx B_0 \frac{\{x,y\}}{2L} e^{-z/L}$$
$$B_z \approx B_0 e^{-z/L}$$

¹Shalchi, Astrophys. J. <u>728</u>, 113 (2011)

² RCT, Dosch, & Lerche, Astron. Astrophys. <u>545</u>, A149 (2012)

R.C. Tautz

Adiabatic focusing

- Test analytical results¹
 - \blacksquare assume L = const so that²

$$B_{\{x,y\}} \approx B_0 \frac{\{x,y\}}{2L} e^{-z/L}$$
$$B_z \approx B_0 e^{-z/L}$$

• Turbulence strength: *relative*...

or *absolute*?

¹Shalchi, Astrophys. J. <u>728</u>, 113 (2011)

² RCT, Dosch, & Lerche, Astron. Astrophys. <u>545</u>, A149 (2012)

The outer heliosphere

"Piled up" Parker spiral

- Sectored magnetic field^{1,2}
 - outer heliosphere

¹ Florinski et al., Astrophys. J. <u>754</u>, 31 (2012) ² Laitinen, Dalla, & Kelly, Astrophys. J. <u>749</u>, 103 (2012) ³ Lazarian & Opher, Astrophys. J. <u>703</u>, 8 (2009) ⁴ Bian & Kontar, Phys. Rev. Lett. <u>110</u>, 151101 (2013)

The outer heliosphere

"Piled up" Parker spiral

- Sectored magnetic field^{1,2}
 - outer heliosphere

- Quasi-diffusive drift motion
- Magnetic reconnection³
 particle acceleration?⁴

¹ Florinski et al., Astrophys. J. <u>754</u>, 31 (2012)
 ² Laitinen, Dalla, & Kelly, Astrophys. J. <u>749</u>, 103 (2012)
 ³ Lazarian & Opher, Astrophys. J. <u>703</u>, 8 (2009)
 ⁴ Bian & Kontar, Phys. Rev. Lett. 110, 151101 (2013)

R.C. Tautz

IV. Solar Wind

The outer heliosphere

Comparison with observations

Ions at the termination shock¹

¹ Perri & Zimbardo, Astrophys. J. <u>693</u>, L118 (2009)

R.C. Tautz

The local interstellar medium

Cosmic-ray anisotropy¹

- Cosmic rays as a diagnostic tool¹
 - requires a reliable transport model
- "Local wiggle" in the interstellar magnetic field^{2,3}

- ¹ Schwadron et al., *Science* <u>343</u>, 988 (2014) ² Opher et al., *Science* <u>316</u>, 875 (2007)
- ³ Jokipii, *Science* <u>316</u>, 839 (2007)

V. Summary & Outlook

Summary & outlook

Transport theory: turbulence matters!

- "Standard turbulence"
 - 🌒 Parallel: SOQLT √
 - ② Perpendicular: UNLT √
- Additional turbulence effects
 - Plasma waves √
 - Intermittency, ?

R.C. Tautz

Summary & outlook

Transport theory: turbulence matters!

- "Standard turbulence"
 - 🌒 Parallel: SOQLT √
 - Ø Perpendicular: UNLT ✓
- Additional turbulence effects
 - 🐌 Plasma waves 🗸
 - 2 Intermittency, ... ?

Future

- Curvature, special geometries
- Anisotropy time profiles
- Coupling with ISM simulations
- GPU accelerated simulations

The conclusion

Review papers

"On Cosmic Rays and Astrophysical Turbulence"

in Turbulence: Theory, Types and Simulation ed. Russell J. Marcuso, New York: Nova Publishers (2012) pp. 365-406

"Cosmic wave-particle interactions: astrophysical magnetic turbulence and high-energy particles"

CRISM-2014

Astronomische Nachrichten <u>335</u>, pp. 501–506 (2014)

Diffusion des matchs de la Coupe du Moncle de rugby

Rugby Diffusion

R C Tautz

The conclusion

Review papers

... and "alternative" diffusion

"On Cosmic Rays and Astrophysical Turbulence"

in Turbulence: Theory, Types and Simulation ed. Russell J. Marcuso, New York: Nova Publishers (2012) pp. 365-406

"Cosmic wave-particle interactions: astrophysical magnetic turbulence and high-energy particles"

Astronomische Nachrichten <u>335</u>, pp. 501–506 (2014)

Diffusion des matchs de la Coupe du Moncle de rugby

Rugby Diffusion

R C Tautz

CR